
CSC373S Lecture 21

• We now begin our last topic of the term, integer programming IP and linear pro-
gramming LP. Mainly we will be discussing the LP relaxation of IPs and rounding
such LPs to obtain IP solutions.

We will start with some examples and then briefly discuss some LP theory.

While there are problems which are directly represented by LPs (eg max flow), I
will focus on NP hard problems which are (in most cases) naturally represented by
IPs. Indeed solving IPs is an NP-hard problem although there are many heuristics
and special cases that are solvable in practice. LPs are efficiently solvable, both in
practice and theoretically although they do not tend to be as efficient as simpler
combinatorial methods.

Now lets consider some NP hard problems which we will first express as an IP (often
as a {0,1} IP which is natural when one is considering problems where solutions are
{0,1} vectors) and then relax to an LP. Having done that, there are two ways to
obtain integral solutions (to the given problem): 1) by “rounding the LP solution”
and 2) by using duality (ie dual inequalities) to guide in the setting of primal
variables. The first approach is in some sense “conceptually simpler” but is not
as efficient as the second approach (which avoids solving the LP). Neither approach
is guaranteed to give a good approximation in general and the approach is intuitively
limited by the “integrality gap” which measures the relative difference between a
rational (LP) optimal solution and an integral (IP) optimal solution. We will only
have time to discuss the first (rounding the LP solution) approach.

• What is the computational significance of the difference between IP and LP? As
stated above, IP is an NP-hard problem whereas LP is polynomial time. In practice
IP is sometimes optimally solved for some large applications but in general it is NP-
hard and we do not know how to solve IPs efficiently. Linear programming has been
used in practice since the late 1940s (mainly by “the simplex method template”).
Here (similar to saying thre Ford Fulkerson template for max flow) we have to specify
the “pivoting rule” to obtain a specific simplex method. Theoretically, no known
pivting rule is poly time and most (if not all) known methods in practice have been
shown to have bad examples which can take exponential time to terminate.

• The first problem we will consider is the (weighted) vertex cover problem ( a mini-
mization problem) See section 11.6 in text. This is the standard example of a simple
rounding procedure.

A vertex cover of G = (V,E) is a subset V ′ ⊆ V such that for every edge (u, v) ∈ E,
either u or v (or both) are in V ′. Given G and w : V → ℜ≥0, the goal is to ind a
min weight vertex cover V ′. In the unweighted case, the goal is to minimize |V ′|.
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Here is how this problem is expressed as a {0,1} IP.

minimize
∑

i wixi

subj to xu + xv ≥ 1 for all (u, v) ∈ E covering constraint

xi ∈ {0, 1} for all vi ∈ V integrality constraint

Here the intended meaning of xi is that it is 1 iff vertex vi is in the VC.

NOTE: There can be many IPs for a given problem.

The LP relaxation replaces the integrality constraint by 0 ≤ xi ≤ 1 for all vi ∈ V
. It is not hard to see that this can be simplified to xi ≥ 0 for all vi ∈ V since an
optimum solution cannot set a variable xi > 1.

• A second problem is a generalization of vertex cover. In the next lecture, we will
consider the following (weighted) set cover problem.

Given a collection of sets C = S1, ..., Sn over a universe U = {u1, ..., um} with weight
function w : C → ℜ≥0, find a subcollection C ′ such that ∪i:Si∈C′Si = U

We can formulate this as a {0, 1} IP :

minimize
∑

i wixi

subj to
∑

i:uj∈Si
xi ≥ 1 for all uj ∈ U

IP: xi ∈ {0, 1}

LP relaxtion : xi ≥ 0

Vertex cover can be seen as a special case of set cover, namely:

A vertex v is a set Sv = {ej : v is adjacent to edge ej} so that the universe is the
set of edges E and the sets in the collection are the vertices V .

Note that this collection of sets has the property that each universe element appears
in exactly two sets. This leads to what is called the f -frequency set cover problem
where each element occurs in at most f sets. Note that vertex cover is a special
case of 2-frequency set cover (since 2-frequency can also have have universe elements
which only occur once.

• So now lets assume we have optimally solved the LP relaxation of the stated IP for
vertex cover.
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The deterministic rounding for vertex cover:

Let {x∗
i |1 ≤ i ≤ n} be an optimal fractional solution (ie optimal solution to the

relaxed LP). Then set x̄i = 1 iff x∗
i ≥ 1/2, else set to 0.

Claim: {x̄i|1 ≤ i ≤ n} is an IP solution (i.e. a vertex cover)

Proof: Suppose (u, v) ∈ E, then x∗
u + x∗

v ≥ 1 since the {x∗
i } values are an LP

solution. This implies that either x∗
u ≥ 1/2 or x∗

v ≥ 1/2 (or both) which implies
that either x̄u = 1 or x̄v = 1 (or both).

Claim: This rounded integral solution is a 2-approximation.

Proof:
∑

i x̄i ≤
∑

i 2(x
∗
i ) = 2LP −OPT ≤ 2OPT

This is a really quick way to see that the weighted vertex cover problem has an
“efficient” (given that we can solve an LP) approximation algorithm. It is easy to
see that the unweighted VC problem had a simple greedy 2 approximation using
the idea of a maximal matching. There are efficient greedy algs for the weighted VC
problem but surprisingly, perhaps the most obvious greedy approach doesn’t work
;i.e. is not an O(1) approx but rather an Hn approx where Hn =

∑n

i=1
1
i
. Namely,

the natural greedy algorithm works as follows: at any iteration while there are still
uncovered edges, choose that vertex vi so as to minimize wi/(current degree of vi).
This alg will (only be an Hn approx (or really Hd if d = max degree) even for the
unweighted case. Currently after much research there is no known poly time (2− ǫ)
approx algorithm (for any ǫ > 0) for vertex cover and subject to some (debatable)
conjectures there cannot be such an approximation alg.

Set cover can be computed by a greedy algorithm (the natural greedy algorithm
above for the weighted vertex cover is a special case) with approx ratio Hd where
d = maxi|Si|. Well accepted complexity assumptions say that this is the best
possible approximation for the set cover problem.

• For a minimization problem, the ratio maxI
IP−OPT (I)
LP−OPT (I)

= OPT (I)
LP−OPT (I)

is called the

integrality gap. For a maximization problem, there is the same confusion (as for
approximation ratios, locality gaps) as to expressing integrality gaps being ≥ 1 or
≤ 1.

Since LP (I) ≤ OPT (I) (for a minimization problem), it is often claimed that the
locality gap for a particular IP/LP formulation of a problem is a bound on the
best possible approximation realizable by this particular IP/LP (for any rounding
procedure).

In practice this may be how best to view the impact of an established locality gap
but technically, it doesn’t follow as far as I can see that there might not be a round-
ing procedure which on every instance I converts the LP (I) solution to a feasible
solution which is close to OPT (I).

For vertex cover, the locality gap of this IP/LP is a meaningful lower bound on the
best approximation possible since we know that the rounding procedure must take

3



the “n/2 fractional solution” for the complete graph to a solution with at least cost
n−1. So any rounding that is independent of the input instance (which I would call
“oblivious rounding”) can double the value of the solution. On the other hand, for
an n node cycle I, OPT (I) = ⌈(n/2)⌉ whereas the fractional opt is n/2 so that on
the cycle an input independent rounding can cause a solution (at least) twice from
the optimal.

In any case, most people take the integrality ratio as a limitation on the usefulness
of a particular IP/LP formulation.

• Sometimes there is a rather natural IP formulation and natural LP relaxation and
also sometimes a natural (oblivious) rounding. This is what we observed in the case
of the vertex cover problem. But in general IP/LP rounding can be very non triv-
ial. “Rounding” just means converting the optimal fractional solution to an integral
solution and does not necessarily mean rounding in the traditional numerical sense
of the word (ie rounding up or down to nearest integer).

• For vertex cover, one can think of various reasonable ways to add constraints to the
IP formulation. For example, for every triangle (vi, vj , vk) (with all three pairwise
edges) in the graph, add the constraint that xi+xj+xk ≥ 2. More generally, we can
add exponentially many constraints that enforce the fact that every length k odd
cycle requires ⌈k/2)⌉ vertices to be covered. It turns out that such constraints can
be added by a more general procedure but in the case of vertex cover, the integrality
gap remains 2− o(1).
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