
CSC373S Lecture 20

• Continuing from the last lecture, we are considering a very natural local search algo-
rithm for the MIS problem on k+1 claw-free graphs (in the hope of improving the k
approximation bound tht one can obtain from a greedy algorithm). As stated in the
problem set a basic oblivious local search for the weighted MIS problem (restricted
to k + 1 claw-free graphs is the following:

S := ∅
While ∃u ∈ V − S such that wu > w(N(u) ∩ S)

S := (S −N(u)) ∪ {u}
End While

For an unweighted graph this simplifies to a greedy algorithm :

S := ∅
While ∃u ∈ V − S such that S ∪ {u} is an independent set

S := S ∪ {u}
End While

• For the unweighted case the proof that the locality gap (i.e. the ratio between any
local optimum and a global optimum) is k (and hence that the above local search
produces a k-approximation) is a charging argument, the same argument that one
could use to show that the greedy algorithm is a k-approximation. Your assignment
question requires a somewhat more involved charging argument for the weighted
case. For a given graph G let S be any locally optimal solution (which in the
unweighted case means any maximal independent set) and let A be an arbitrary
solution (and in particular an optimal solution).

Lets define a function h : A → S which is a k to 1 mapping which then implies
|A| ≤ k · |S|. First for any vertex v ∈ S ∩A, h(v) = v. (So without loss of generality
lets assume that S ∩ A = ∅.) Now consider any u ∈ A and (having arbitrarily
ordered all vertices) define h(u) = the smallest vertex v ∈ S such that (u, v) ∈ E.
Clearly there must be such a vertex v or else the local search algorithm would have
added u to S. Now the claim is that at most k different vertices u ∈ A can be
mapped to the same v. This follows immediately from the k + 1 claw-free property
since A is supposed to be an independent set and h(u) = v implies that (u, v) ∈ E
so that more than k such vertices u would imply a bigger claw (with center v).

• As such the above local search algorithm isn’t very interesting as it is really just
another way of restating the greedy algorithm. But we can slightly generalize this al-
gorithm to obtain an improved approximation for the unweighted case. Namely, we
will now consider larger sets of vertices in V −S as possible improvements. Letting
NS(I) = {u ∈ S : ∃x ∈ I with (u, x) ∈ E}, we have the following algorithm for any t:

1

S := ∅
While there exists an independent set I ⊆ V − S such that |I| ≤ t
and |I| > |NS(I)| then

S := (S ∪ I)−NS(I)
End While

Such a set I is called a t-improvement and we can call this a t-local-search algorithm.
We state (without proof for the time being) the following result:

For t = 2, the locality gap is k+1
2
. The algorithm can be implemented so as to run

in “nearly linear” time. The approximation bound is 5
3
for k = 3. For k ≥ 4, the

approximation bound can be improved (by choosin larger t) to k
2
+ǫ but taking time

O(nlogk 1/ǫ). So the message here is that oblivious local search can essentially cut
the approximation ratio in half but that is all it can do.

• Unfortunately (or interestingly, if you study algorithms), this kind of oblivious t
local-search does not provide the same improvement in the weighted case. Here is
what is known for the weighted MIS problem restricted to k + 1 claw-free graphs:

1. The oblivious t local-search algorithm has a locality gap of k−1+ 1
t
so basically

larger neighbourhoods do not improve the locality gap.

2. If instead of taking S = ∅ as the initial set, if we initially take S to be the solu-
tion of the greedy algorithm and then use the following oblivious local-search
algorithm, the approximation bound is 2

3
k. Here (as above) NS(C) = {u ∈ S :

∃x ∈ C with (u, x) ∈ E}

While there is a vertex v ∈ S and a claw C centered at v
such that w(C) > w(NS(C)) then

S := (S ∪ C)−NS(C)
End While

This shows that while the locality gap does not improve, the approximation
ratio does improve by taking the greedy solution as the initial solution.

3. There is a non-oblivious local search method that achieves approximation ratio
k+1
2

+ǫ. After creating a maximal independent set, the method looks for a claw
that improves the related “potential function” w2(S) =

∑
v∈S w

2(v). What is
the intuition for using such a potential function? Suppose we had two roughly
equal valued solutions, one having many nodes with small weights and one
having few nodes with large weights. Which is the better solution for hopefully
finding a better solution in a Hamming local neighbourhood? Intuitively, the
solution S havng few nodes seems like the right choice as few nodes in V − S
seem likely to be adjacent. This intution leads one to try using a potential
function such as w2(S) which favours small sets of nodes with large weights.

• Another example of a very basic and natural local search algorithm is for the
(weighted) max cut problem. See KT, section 12.4. Let G = (V,E) be a graph

2

with edge weights w : E → ℜ≥0. In the (weighted) max cut problem, the goal is
to find a cut so as to maximize the cardinality (resp. weight) of the cut. As in
min cuts, a cut is a partition (A,B) of the vertices and the weight of the cut (what
we called the capacity in the max flow-min cut setting) is

∑
(u,v)∈E w(u, v). While

finding a (global) min cut or an s− t cut is poly time computable, max cut is an NP
hard problem and the best approx ratio known for a polynomial time approximation
algorithm is .878 (or 1/.878 ≈ 1.139) so as to consistently stay with approximation
ratios bigger than 1) using semi-definite programming SDP. There is some evidence
(based on a different complexity assumption) that this SDP based approximation
is the best approximation possible for a polynomial time algorithm. Recently there
there has been interest in obtaining a “combinatorial algorithm” (one not relying
on solving LPs or SDPs) that is better that a 2-approximation. That has been
accomplished but still this remains a topic of interest. There is a simple to state
local search algorithm that achieves approximation ratio 2 and it is still an open
problem if any greedy-like or local search algorithm can do better than this ratio.

In this algorithm, we consider the single move neighbourhood N(A,B) of a partition
(i.e. feasible solution) (A,B); that is, N(A,B) is the set of n partitions (A′, B′) that
can be obtained by moving one node from A to B (or from B to A). If we let χA be
the n bit characteristic vector of A, then Nd(A,B) is the neighbourhood of vectors
at distance d from χA. (When feasible solutions are subsets, a small Hamming
distance ball is often used as the neighbourhood.)

Choose any initial partition (A,B)
While there is a better partition (A′, B′) in N1(A,B)

(A,B) := (A′, B)
End While

Claim: This is a 2 approximation algorithm; that is, when the algorithm terminates,
the value of any (global optimal) solution will be at most twice the of the value of
a local optimum.

In fact, if W =
∑

e∈E we, then any local optimum (A,B) has value ≥ W/2. (This
is called the absolute ratio and also called the totality ratio.)

Proof: To simplify notation, WLG, say G is a clique with all edges present by setting
any missing edge weight to 0. Given a local opt, we have :

for all u ∈ A,
∑

v∈A w(u, v) ≤
∑

v∈B w(u, v)
or else u can be moved to B.

summing over all u ∈ A

2
∑

u,v∈A w(u, v) ≤
∑

u∈A,v∈B w(u, v) = w(A,B)

3

We repeat the same argument for the set B to obtain

2
∑

u,v∈B w(u, v) ≤
∑

u∈A,v∈B w(u, v) = w(A,B)

Adding these inequalities and dividing by 2, we get
∑

u,v∈A w(u, v)+
∑

u,v∈B w(u, v) ≤
w(A,B)

And finally, adding w(A,B) to both sides we get W ≤ 2w(A,B)

Note: The above local search uses the distance 1 neighbourhood N1(S). It turns
out that any contant distance d (using the neighburhood Nd(S)) will not improve
the bound.

• So any local optimum here is within a factor of 2 of being optimal. But how long
does it take for this algorithm to terminate? The algorithm clearly terminates since
there are only finitely (but unfortunately exponentially) many partitions. The fol-
lowing discussion illustrates a common method to overcome possible exponential
time for termination.

KT say it is an open problem if there is a way to find a local optimum in poly-
nomially many steps. But as they point out, one can achieve a ratio as close as
we want to 2 in polynomially many steps. More specifically, instead of looking for
a better solution in N(A,Ba), we look for a solution (A′B′) which is sufficiently
better, namely w(A′B′) ≥ (1 + ǫ/n)w(A,B) for ǫ as small as we want.

Claim: For any ǫ > 0, any approximate local optimum (A′B′) for this modified local
search algorithm satisfies w(A′B′) ≥ 1/(2 + ǫ) ·W

Proof: We add (2ǫ/nw(A,B) to the right side of each inequality; eg for all u ∈
A,

∑
v∈A w(u, v) ≤

∑
v∈B w(u, v) + 2 ǫ

n
w(A,B)

Claim: For any ǫ > 0, if we start with say an (A,B) solution so that the largest
weight edge is in the cut, then the modified algorithm terminates in (n/ǫ)logW local
neighbourhood searches.

Note: In the weighted MIS local search results, we started the local search from a
solution already known to have some reasonable approximation and that could be
used to speed up the convergence.

• The final local search application I will discuss now is for the exact Max-2-Sat which
we already discussed in the context of a simple randomized algorithm and how that
algorithm can be de-randomized by the method of conditional expectations thus
becoming a greedy online algorithm. While the bounds given here for local search
are not as good as what can be obtained by other methods, this application serves
to again demonstrate the usefulness of non-oblivious local search.

4

Let F be an exact 2 CNF formula F = C1 ∧ C2 . . . ∧ Cm where Ci = (ℓ1i ∨ ℓ2i) and
ℓji ∈ {xk, x̄k|1 ≤ k ≤ n} is a literal. In the weighted version, each Ci has a weight
wi.

For a truth assignment, let W (τ) be the weighted sum of satisfied clauses in F (τ).

A natural oblivious local search algorithm uses a Hamming distance d neighbour-
hood Nd(τ) = {τ ′ : τ and τ ′ differ on at most d variables }

Choose any initial truth assignment τ
While there exists a truth assignment τ ′ ∈ Nd(τ) such that W (τ ′) > W (τ)

τ := τ ′

End While

Note: In the following, I am switching to totality and approximation bounds that
are less than 1 as this seems to be traditional for this problem.

It can be shown that for d = 1, the absolute (totality) ratio for this local search
algorithm is 2/3 (and more generally for exact Max-k-Sat the ratio is k/(k+1). This
ratio is a tight ratio for any d = o(n). That is, even very large Hamming neigh-
bourhoods do not improve the 2/3 absolute ratio. This is in contrast to the greedy
algorithm (that is derived from the randomized algorithm) that achieves abosolute
ratio (2k−1)/2k. So the oblivious local search algorithm does not have a good worst
case absolute ratio. (In practice the local search algorithm actually performs better
than this naive greedy and one could always start with the greedy and then apply
local search.)

Here is what I again find interesting. As I said, even if we take the neighbourhood
to be Nd(n) with d(n) = o(n), the ratio essitally does not improve. (This is just
a comment about this local search algorithm.) In contrast here is a better non-
oblivious local search algorithm.

Let W0(τ), (respW1(τ) and W2(τ)) be the weighted sum of clauses satisfied by 0
(resp 1 , 2) literals.

Informal claim: all things being equal, better to satisfy a clause with two literals than
one literal. So we introduce the following potential function: (3/2)W1(τ) + 2W2(τ)

Claim: Using this potential function with Hamming distance 1, the absolute ratio
is now 3/4 (and more generally (2k − 1)/2k for exact Max-k-Sat).

5

