
CSC373S Lecture 2

• Last time we ended by claiming that a greedy algorithm (lets call it EFT for earliest
finishing time) that sorts intervals by their finishing times (ties can be broken arbi-
trarily) and then accepts “greedily” is an optimal algorithm for the interval selection
problem (= one machine interval scheduling).

The text and the notes from CSC373 Fall 2010 suggest the following proof for the
optimality. Let Si be the set of intervals accepted by the end of the ith iteration.
We say Si is promising if it can be extended to an optimal solution. Formally this
means that for all i, there exists an optimal solution OPTi such that Si ⊆ OPTi ⊆
Si ∪ {J(i + 1), . . . , J(n)} and by induction (as in those notes) we prove that all Si

are promising which implies that Sn must be optimal.

• An alternative proof is by what is called a “charging argument”. In this case,
the charging argument informally wants to charge each interval of an optimal (or
arbitrary solution) to a unique interval in the greedy solution. That is, let OPT be
any (feasible) solution (we can think of it as an optimal solution) and S the solution
of the EFT greedy algorithm. We want to define a 1-1 function h : OPT → S. This
would imply that |OPT | ≤ |S|. Here then is how we can define h: Let h(J) be
that interval J ′ in S that intersects J and has the earliest finishing time amongst
intervals in S intersecting J .
First we claim tha h is a function (i.e. J ′ must exist and is unique). Why?
Second we claim h is 1-1. Suppose both J1 and J2 in OPT are mapped to the same
J ′ in S and and without loss of generality assume that f1 < f2 where f1 (resp f2)
is the finishing time of J(1) (resp. J(2)). Let f ′ be the finishing time of J ′. By
the definition of the mapping h, f ′ ≤ f1 or else the greedy EFT algorithm would
have taken J1 (and not J ′). So we have f ′ ≤ f1 < f2 and since J1 and J2 cannot
intersect, J2 cannot intersect J ′.

• Both kinds of proofs can be utilized to prove optimality for other greedy algorithms
(for other problems). The “promising argument” seems (to me) tailored for greedy
style algorithms. The charging argument is generally applicable. Both arguments
can be used to prove approxmation bounds (for non optimal algorithms) but I think
a charging argument is a little easier to present for approximation results.

• A few comments about the other non optimal greedy algorithms for interval selec-
tion.

Earliest start time (EST) is arbitrarily bad (ie approx ratio n − 1 where n = the
number of intervals).
Shortest processing time SPT is a 2-approximation algorithm; i.e. no solution can
have more than twice the number of intervals found by SPT.

Fewest conflicts is not opimal (example shows no better than 4/3 approx); tight
approx is 3/2. I also note that the structure of this algorithm is somewhat different
in that the order in which intervals are chosen is not fixed initially but rather changes
adaptively depending on what intervals can no longer be taken.

1

• Lets consider a generalization of the interval selection problem, namely what is
called the JISP problem (Job Interval Selection/Scheduling problem). An interval
J(i) now is repesented by a triple (si, fi, ci) where si and fi are as before the starting
time and finishing times for the interval. Now ci is the job (or ‘class’) to which J(i)
belongs. Compatible (non conflicting) intervals must not intersect (as before) and
furthermore cannot belong the the same job; that is, if ci = ck then J(i) and J(k)
are not compatible.
Consider the same algorithm EFT but now with this more general notion of com-
patibility. In the problem set you are asked to show that EFT is a 2-approximation
algorithm for the JISP problem. That is, for any solution OPT , and S the solution
given by EFT (with the new def of compatible) we have |OPT | ≤ 2 · |S|.
NOTE: JISP is an NP hard optimization problem and hence we cannot expect an
optimal algorithm. In fact, it is know that it is NP-hard (in the worst case) to
approximate JISP within approximation factor (1 + ǫ) for some small ǫ > 0. (This
will be in contrast to some problems which have PTAS and FPTAS algorithms as
will be explained later.) Currently, the greedy EFT provides (as far as I know) the
best approximation guarantee of any deterministic polynomial time algorithm.
Motivation: Variable length courses are given once a week and are represented by
intervals denoting their start and finishing times and the instructor (i.e. ci). The
goal is to choose a maximum number of non-intersecting courses without taking two
courses from the same instructor.

• The next greedy algorithm we wish to consider is for what is (usually) called the in-
terval coloring problem (and called interval partitioning in the Fall notes) . Namely,
we are again given n intervals J(1), . . . , J(n) and now we wish to color all the in-
tervals with as few colors as possible so that intervals having the same color do not
intersect. (As a machine scheduling problem we want to schedule the intervals on
as few machines as possible.)

Surprisingly (perhaps) the ordering s1 ≤ s2 . . . ≤ sn (which was arbitrarily bad
for interval selection) now leads to an optimal greedy algorithm (lets call it EST
for earliest starting time) for interval coloring. See slide 40 of the notes. The style
of argument used to prove optimality is different here. Essentially, the argument
is to show some intrinsic lower bound (in terms of some parameter of the input
instance) for any allowable solution and then show that the greedy solution achieves
this bound. In this case, the bound is the maximum number of intervals that can
intersect at any point of time (called the “depth” d of a set of intervals in the notes).
That is, |G| = d ≤ |OPT | where G is the set of colors used by the greedy algorithm
EST and OPT is any solution. So an optimal algorithm must then use exactly d

colors (as does the greedy algorithm).

2

