
CSC373S Lecture 19

• We now begin the topic of local search. In some sense we already began that topic in
that the Ford Fulkerson FF algorithm for max flow can be viewed as a local search
algorithm but it is rarely presented in this context. Lets start with what I would
call the vanilla or basic local search paradigm:

Compute an initial solution S

While there exists a “better solution” S ′ in a “local neighborhood” N(S)
S := S ′

End While

Assuming we can compute some initial feasible solution (e.g. for the Max Sat, Max
Cut, or Max Independent Set MIS problems), this algorithm is conceptually simple
to implement and will either not terminate or will terminate in a locally optimally

solution and the standard questions to ask are:
1) Does the algorithm terminate and if so how fast?
2) Upon termination how good is a local optimum compared to a global optimum?

The worst case ratio (over all local optimum) between a local optimum and a global
optimum is called the locality gap. As such the approximation ratio is at least as
good as the locality gap and could sometimes be better if (say) we never reach a
worst case local optimum from the initial solution.

When we are computing a search problem (or a problem where just getting a feasible
solution is an issue), the paradigm can be used and now “better” can mean “closer
to being feasible”.

• There are many many variations on this vanilla local search paradigm and even for
the vanilla paradigm we need to explain things. Lets mainly consider the case where
we can (efficiently) obtain an initial feasible solution. We have the following issue:

1. How to choose the initial solution? Often one takes a naive or trivial solution,
or a random solution, or a solution computed by a simple or efficient method
such as a greedy algorithm.

2. How to define the local neighborhood N(S) of a solution S? In problems where
a solution is a subset (like MIS) or equivalently a vector (x1, ..., nn) then a natu-
ral neighborhood (but not the only one) is a bounded Hamming neighborhood;
i.e. z ∈ N(x) iff {i : zi 6= xi} ≤ d with d small.

3. What do we mean by ”better”. For an optimization problem we usually mean
”better” with respect to the given objective function. Such local search al-
gorithms have been called “oblivious local search”. If instead we interpret
“better” with respect to some related potential function, this is called non

1

oblivious local search. (We will see an example of non-oblivious local search
later.)

Aside: The word “oblivious” seems like a poor use of terminology. If I were
defining my own terminology, I would replace the terminology of greedy al-
gorithms by myopic algorithms some of which are greedy (or stingy for a cost
problem) where greedy/stingy then is an adjective implying a most opportunis-
tic local decision in each iteration. Similarly, I might call oblivious local search
to be greedy local search if it makes the best improvement (with the neigh-
bourhood) to the given objective function. But lets not invent new terminology.

4. For either oblivious or non-oblivious local search do we settle for any better
solution or for the best solution (i.e. greedy local search) in N(S)?

5. Usually if we start with a feasible solution we assume that N(S) means only
feasible solutions but that does not have to be the case.

Beyond all these issues, most heuristic (and one might say practical) applications
of local search allow ways to escape local optima in some controlled way. Usually
this is done in some randomized way and the terminology used is “stochastic local
search”. Perhaps the best known generic method in this regard is a parameterized
method called “simulated annealing”. For satisfiability problems, there is a popular
class of stochastic local search methods under the name WALKSAT.

There are books written about stochastic local search and in general there is a com-
mon belief that local search style methods are often the best approach to solving
optimization problems although the methods are often not analyzed (with regard to
say locality gap or some sort of “expected locality gap” with the expectation over
random inputs and/or randomization in the algorithm)). The use of randomization
in local search methods may be another reason this topic is delayed in algorithm
courses. But given the prominence of local search as a practical methodology, I think
it should be introduced earlier in courses and not viewed as an advanced technique.

• Although, local search usually does not yield an optimal algorithm (i.e. the local
optimum is not a global optimum), there are two very important settings where
(oblivious) local search does produce optimal solutions, namely

1. The simplex method for linear programming LP solving can be thought of as
local search (assuming we can start with a feasible solution); however, from a worst
case perspective all currently used “pivot rules” (for choosing a neighboring solu-
tion) can be shown to take exponential time to terminate. We will be discussing LP
relaxations of integer programming IP in the last two weeks.
2. The Ford Fulkerson based methods for max flow algorithms (including alternat-
ing path methods for matching). Here the neighbourhood N(f) of a flow f is the
set of all flows f + fπ where fπ is the flow along an augmenting path π. Not that
this neighbourhood can be exponential in size (i.e. there can be exponentially many

2

augmenting paths) but still we can search the neigbourhood in polynomial time as
this is just a search for some s− t path (or, in particular, a search for an augmenting
path having the biggest residual capacity).

NOTE: I wish to emphasize again that local search is generally thought of as a
heuristic and often is not analyzed; in many applications, some variant of local
search often performs well “in practice”. Trying to analytically understand why
local search does so well in many applications is a subject of ongoing interest. But
just like greedy algorithms or any conceptually simple approach, if nothing else
having such algorithms gives us a benchmark for more sophisticated algorithms.

• We will briefly consider three applications of local search approximation algorithms
where the neighborhood is essentially defined by a small Hamming distance. The
first application is not in the text. We consider the unweighted maximum indepen-
dent set (MIS) problem in k + 1 claw free graphs. This problem directly relates to
question 6 in problem set 3 which concerns the weighted version of this problem.

For arbitrary graphs G = (V,E), as we have mentioned before, the MIS problem is
not only NP-hard, it is NP-hard to approximate within a factor of n1−ǫ for any ǫ > 0
where n = |V |. But in many graph theoretic applications, we are often dealing with
restricted classes of graphs. (We started the course discussing the interval selection
problem which is just the MIS problem for interval graphs.) Now we will consider
another restricted class of graphs for which we can approximate the MIS.

A graph G = (V,E) is a k+1 claw-free graph if the neighbourhood Nbd(v) of every
vertex v has at most k independent vertices. Why is this called k + 1 claw-free? A
k+1-claw in a graph G = (V,E) consists of a vertex v (called the center of the claw)
and k + 1 adjacent vertices (called the talons of the claw). So saying that there are
at mlst k independent vertices in the neighbourhood of any vertex is equivalent to
saying that the graph does not have a k + 1 claw.

There are many graphs which turn out to be k + 1 claw-free for small values of
k. Many of these examples come from geometric intersection graphs. For example,
the intersection graphs for unit length intervals (resp. unit squares, unit disks in
Euclidean 2-space) are 3-claw free (resp. 4 claw free, 6-claw free). Note however,
that arbitrary interval graphs are not in general k + 1 claw-free for any fixed k.
(There is a common generalization of k+1 claw-free graphs and interval graphs but
we will not discuss that in this course.) Another interesting example of k + 1 claw
free graphs comes from the k-set packing problem where the input is a collection
of k-sets (i.e. sets of cardinality at most k) and the goal is to find a maximum size
subcollection of non intersecting sets. Set packing is the underlying combinatorial
problem in combinatorial auctions.

It is not difficult to see that a very natural greedy algorithm yields a k-approximation
for the weighted (and hence unweighted) MIS problem restricted to the class of k+1
claw-free graphs. Namely, sort the vertices so that w(v1) ≥ w(v2) . . . ≥ w(vn) and

3

greedily add vertices to form a maximal (but not necessarily maximum) indepen-
dent set (i.e. add a vertex u to the current independent set S iff S ∪ {u} is still an
independent set.

Aside: 3 claw-free graphs are called claw-free and the weighted MIS problem can
be solved optimally (in poly time) for 3 claw-free graphs and becomes NP-hard for
k ≥ 4 claw-free. The 3 claw-free result is not an easy result.

We wish to consider a very natural local search algorithm for the MIS problem on
k + 1 claw-free graphs (in the hope of improving the k approximation bound). As
stated in the problem set a basic oblivious local search for the weighted MIS prob-
lem (restricted to k + 1 claw-free graphs is the following:

S := ∅
While ∃u ∈ V − S such that wu > w(N(u) ∩ S)

S := (S −N(u)) ∪ {u}
End While

For an unweighted graph this simplifies to :

S := ∅
While ∃u ∈ V − S such that S ∪ {u} is an independent set

S := S ∪ {u}
End While

4

