
CSC373S Lecture 17

• We recall the definition of a flow in a flow network.

A flow in F is a function f : E → ℜ (not necessarily non negative) satisfying the
following conditions:

1. capacity constraint f(e) ≤ c(e) for all edges e.

2. skew symmetric f(u, v) = −f(v, u) IN KT, f(u, v) ≥ 0

3. flow conservation for all u 6= s, t
∑

v:(u,v)∈E f(u, v) = 0. In KT, sum in = sum
out

A little thought shows that this is indeed an equivalent formulation of the more
direct “flow in = flow out” statement of flow conservation.

The value of a flow, which I will denote by val(f) or |f | is val(f) = ∑
v∈N(s) f(s, v)

= flow out of s.

Later we will see that this is the same as flow into t; that is,
∑

u:(u,t)∈E f(u, t)

• Consider the example in the old lecture notes. (Convention: negative flows on 0
capacity edges are not shown.)

Let f be a flow in flow network F = (G, c, s, t)

The residual capacity (wrt. flow f) on an edge e is cf (e) = c(e)− f(e) ≥ 0 (by the
capacity constraint). The residual graph Gf = (V,Ef ) where Ef = {e|cf (e) > 0}
and residual network Ff = (Gf , cf , s, t). An augmenting path π (relative to a
flow f) is an s to t path in Gf . An augmenting path π has a residual capacity
cf (π) = mine∈πcf (e) > 0.

An augmenting path defines a flow:
fπ = cf (e) if e = (u, v) ∈ π
= −cf (e) if e = (v, u) and (u, v) ∈ π
= 0 otherwise

fπ is a flow in Ff (and hence in F)

Fact: A flow f ′ in Ff . Furthermore, (f + f ′) is a flow in F where (f + f ′)(e) =
f(e) + f ′(e).

• The fact that an augmenting path in the residual graph allows us to increase the
flow suggests the Ford Fulkerson algorithm template:

For all e ∈ E, set f(e) = 0 % Initialize flow f
While there exits an augmenting path in Gf

choose an augmenting path π
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f := f + fπ
End While

NOTE: I have called this an algorithm template since we have not said how such a
path is chosen and if the choice is important. In particular, we may want to choose
the augmenting path π so as to maximize cf (π). As we have seen (in the first as-
signment) , this can be done using Dijkstra’s algorithm say in time O(|E| log n).
Another possibility is choosing a shortest length path.

Two big questions:

1) Does the algorithm always terminate?
2) If it terminates, does it always yield an optimal flow?

Note: If there is an augmenting path π then clearly the flow is not optimal since
the flow cf (π) on this path can be added to the current flow. But if there is no
augmenting path does this mean that the flow is optimal?

• The max flow-min cut theorem

An (s, t) cut is a partition (S, V − S) such that s ∈ S and t ∈ T = V − S.

The capacity of a cut is c(S, T ) =
∑

(x,y)∈E:x∈S,y∈T c(x, y)

The flow across a cut is f(S, T ) =
∑

(x,y)∈E:x∈S,y∈T f(x, y)

Clearly f(S, T ) ≤ c(S, T )

Claim: Let f be a flow. Then for every cut (S, T ), val(f) = f(S, T ).

(Lemma 3 in notes)

Cor: val(f) =
∑

u,t f(u, t) = flow into terminal t.

Cor: For every cut (S, T ), val(f) ≤ c(S, T ).

Now we are ready for the max flow-min cut theorem (Ford Fulkerson)

Theorem: The following are equivalent:

1) f is a max flow
2) There are no augmenting paths wrt f
3) val(f) = c(S, T ) for some cut (S, T ).
(That is, we can conclude “max flow = min cut”).

Proof: Show 1) implies 2) implies 3) implies 1)

1) implies 2) This is obvious as we have already mentioned that the existence of an
augmenting path implies the flow is not optimal.
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2) implies 3) Let S = {u| there is a path from s to u in Gf}. This is a cut since
t /∈ S. val(f) = val(S, T ) and we claim val(S, T ) = c(S, T ) or else some other
vertex can be reached.

3) implies 1) Suppose val(f) = c(S, T ). Since for every cut (S ′, T ′) we have val(f) ≤
c(S ′, T ′), and hence (S, T ) must be a max flow.

• There are some immediate corollaries of the Ford Fulkerson (FF) Min Cut Max
Flow theorem and any FF algorithm. .

1. If an FF algorithm terminates, it terminates in an optimal flow.

2. If all the capacities are integral, then a FF alg must terminate and will compute
an integral max flow. If the largest possible flow is C then any FF algorithm
will terminate in time C iterations and time O(mC). Note: C ≤ ∑

e=(s,u)∈E ce
and C ≤

∑
e=(v,t)∈E ce.

• We now know that in a flow network with integral capacities, any Ford Fulkerson
(FF) algorithm must terminate and terminate with an optimal flow value. This
leaves the important questions as to whether or not the way we choose augment-
ing paths is important. We have the following facts about bad ways to choose
augmenting paths:

1. There is a way to choose augmenting paths so that even with integral capacities,
it can take val(f) iterations to terminate and this value can be exponential in
the representation of the input (i.e. when the edge capacities are say m = |E|
bits meaning the flow values can be exponential in m and the input can be
represented in m2 bits. See notes for such a bad example.

2. What is less obvious is that for some setting of algebraic (not rational) edge
capacities, here is a bad way to choose augmenting paths so that FF algorithm
does not terminate.

• However, the good news is that there are good ways to choose the augmenting paths
so that the FF algorithm will always terminate in poly(m) steps where m = |E|.
This is called a strongly polynomial algorithm when the time does not depend on
the length of the integer (or rational) inputs (except that we are counting each
arithmetic operation as one step). The text gives one strongly polynomial algo-
rithm (preflow push (with time bound O(n3) and one non strongly polynomial time
algorithm (scaling max-flow with time bound O(m2 logC) for max flow.

It is also the case that choosing the augmenting path that maximizes the residual
flow (ie using a variant of Dijkstra’s algorithm that we saw in the first problem set)
will lead to a strongly polynomial algorithm. In that variant we defined the cost of
a path π to be the residual capacity cf (π) = mine∈πcf (e) > 0.

And choosing the augmenting path to be the shortest path also results in a strongly
poly time algorithm for max flow. This is called the Edmonds-Karp algorithm and
the algorithm has time complexity O(m2n). Independently a similar result was
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given by Dinitz. The Dinitz algorithm and proof is in terms of building a layered
graph from the residual graph and the concept of blocking flows and is perhaps the
conceptually simplest proof and has time O(mn2). When all capacities are unit, the
algorithm runs in time O(m

√
n) time.

The current best max flow alg runs in time O(mn). The max flow problem continues
to be of active interest.

• Some immediate applications of max flow.
We do not know of an efficient way to use greedy, divide and conquer (DC), or
dynamic programming (DP) to optimally solve max flows nor do we know how to
optimally compute maximum matchings in a bipartite graph efficiently by the pre-
vious paradigms (greedy, DC, DP).

We are given G = (V,E) a bipartite graph where V = X ∪ Y and E ⊆ X × Y . (As
defined before) a matching (in any graph) is a subset of edges M ⊆ E such that no
vertex is adjacent to more than one edge in M . In a bipartite graph, a matching
becomes a 1-1 mapping from X into Y . The goal is to compute a matching M of
maximum size |M—. In weighted max matching the edges have weights and the
goal is to compute a matching of max weight.

We transform the bipartite max matching problem into a flow problem as follows:

Let G′ = (V ′, E ′) where V ′ = V ∪{s, t} and E ′ = E∪{(s, x)|x ∈ X}∪{(y, t)|y ∈ Y }
We make this into a flow network FG by making s and t the source and terminal
nodes and setting c(e) = 1 for all e ∈ E ′.

Claim: Let f be a max flow in FG and M be a max matching in G, then val(FG) =
|M |. More generally, every matching M in G gives rise to an integral flow fM in FG

with val(fM) = |M | and conversely every flow f in ⊣FG gives rise to a matching
Mf in G with |M | = val(f).

Since C = min|X|, |Y |, the algorithm terminates in O(mC) = O(mn) time. Dinitz’s
levelled graph/blocking flow algorithm for max flow was utilized by Hopcroft and
Karp to compute bipartite max matching in O(m

√
n) which remains as the best

known time bound for bipartite max matching.

Corollaries: Hall’s Theorem as corollary of max flow-min cut: In a bipartite graph
G = (V,E) with vertices X ∪ Y , there is a matching covering all vertices in X (and
hence a perfect matching if |X| = |Y |) iff for all subsets A ⊆ X, |N(A)| ≥ |A|.
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