
CSC373S Lecture 15

• Here is an application of the symbolic determinant problem. Suppose we have an
unweighted bipartite graph G = (V,E) with V = V1 ∪ V2, and E ⊆ V1 × V2. A
matching M is a subset of edges such that no vertex appears in more than one edge
in the matching.

NOTE: We already saw a very restricted case of weighted bipartite matchings when
we considered the edit distance problem where the edges in the matching did not
intersect. We solved that problem using dynamic programming. What happens
when we try to use the same approach for an arbitrary matching?

Lets assume |V1| = |V2| = n and we want to determine if G has a perfect match-
ing (i.e. |M | = n). The randomized method we will now provide is not what one
would use for a standard sequential computer but it does provide the possibility of
an efficient parallel algorithm. (This approach can be extended to provide parallel
algorithms for finding a maximum size matching.) Soon we will see how to (sequen-
tially) solve this problem using max flow.

Construct a n × n symobolic matrix AG with entries aij = xij if (i, j) ∈ E and
0 otherwise. Consider the symbolic determinant det(AG). Each non zero term
(−1)sgn(σ)Πn

i=1ai,σ(i) corresoponds to a perfect matching and since these terms cannot
cancel (as polynomials) we conclude that G has a perfect matching iff det(AG) is
not the zero polynomial. As shown in the last lecture we can solve this symbolic
determinant problem in O(n3) time by a randomized algorithm with small one-sided
error.

• Our next example of a randomized algorithm pertains to a central problem in logic,
AI, and complexity theory. Namely. we will consider the Max-Sat problem. The
SAT problem (or CNF-SAT to be more precise) is the first and probably best known
NP-complete problem. It is defined as follows: We are given a propositional for-
mula F in conjunctive normal form CNF; that is, F is a conjunction of clauses
C1 ∧C2 . . . ∧Cm where each Ci is a disjunction of literals ℓi1i ∨ ℓi2i . . . ∨ ℓiki and each
literal ℓji is variable xj or its negation xj. The question is to determine whether or
not F is satisfiable; i.e. has a truth assignment setting the variables to either TRUE
or FALSE such that the resulting formula becomes TRUE.

F is a k-CNF formula if each clause has at most k literals and we say it is an exact
k-CNF formula if each clause has exactly k literals over k distinct variables. The
resulting satisfiability question is called the k-SAT (respectively, the exact k-SAT
problem) and it is NP-complete for k ≥ 3. (It is in polynomial time for k = 2.)
We are interested in a corresponding optimization problem Max-SAT and (exact)
Max-k-SAT (which are examples of constraint satisfaction problems central to issues
in AI). Namely, we want to maximize the number of clauses that can be simultane-
ously be satisfied. Since this extends the SAT problem, this is obviously an NP-hard
optimnization problem for k ≥ 3 and it turns out to be NP-hard even for k = 2.

1

We shall now see a simple randomized algorithm that will attain (in expectation) a
reasonably good approximation of the optimum number of satisfiable clauses. There
is also a weighted version of Max-SAT, where each clause Ci has a weight wi and
the goal is to maximize the weight of satisfied clauses. (Here the weight represents
the importance of a particular clause = constraint.)

• Lets consider the weighted exact Max-k-Sat problem; that is, we are given F =
C1 ∧ C2 ∧ Cm where every clause Cj has exactly k literals and has weight wj. Now
what would be the most naive random algorithm?
Set the truth value of every xi independetly an uniformly;
that is, Prob[τ(xi) = TRUE] = Prob[τ(xi) = FALSE] = 1/2.

Claim: Eτ [
∑

j:Cjis satisfed by τ wj] =
2k−1
2k

∑m

j=1 wj ≥
2k−1
2k

OPT .
Here OPT denotes the optimum over all possible truth assignments for the sum of
weights of satisfied clauses.

Proof: A basic fact about expectations is that the expected value of a sum is
the sum of the expected values. Therefore, we have Eτ [

∑
j:Cj is satisfed by τ wj] =∑

j Eτ [Cj is satisfed by τwj].
Now we are setting each propositional variable xi independently so the probability
that Cj is not satsified by τ is equal to the probability that each of its k literals were
falsified by τ ; that is, this happens with probability 1

2k
. That is, the probability that

Cj is satisfied is 2k−1
2k

from which the desired bound on the approximation (to the
total weight of all clauses) is obtained.

• Unlike our previous examples for testing polynomial identities, in this case we know
how to de-randomize this algorithm and obtain the same approximation. In fact,
the deterministic algorithm (called Johnson’s algorithm) was known first and then
it was recognized that Johnson’s algorithm is the de-randomization of the algorithm
above. This method of de-randomization is called the method of conditional expec-
tations and it applies to some other randomized algorithms.

Here is how we can deterministically find a good τ using the method of conditional
expectations. In this case, the de-randomized algorithm can be seen to be a greedy
(online) alg.

Consider a computation tree that uniformly and indpendently sets each variable xi

(with Prob[xi = TRUE] = Prob[xi = FALSE] = 1/2). We can consider the xi in
any order so lets say in the order x1, ..., xn.

Let D be the desired expected value.

Then D = (1/2)E[Fτ |τ(x1) = TRUE] + (1/2)E[Fτ |τ(x1) = FALSE]

Hence, at least one of the two expectations above must be at least D.

We can compute these two expectations and take the better choice. We do this one
variable at a time to determine a τ that has the desired approximation.

• What can be said about Johnson’s algorithm when applied to an arbitrary CNF
formula (i.e. the Max-SAT problem)? Johnson conjectured (in the mid 70s) that

2

the approxiamtion bound for his algorithm was 2/3 and after 10 years it was proved
that Johnson’s algorithm has approximation ratio 2

3
and that this bound is tight.

That is, for all formulas F ,
Johnson(F) ≥ 2

3
OPT and there exists a formula F such that Johnson(F) = 2

3
OPT .

Very recently (this January), it has been shown that this approximation ratio im-
proves somewhat if the variables are chosen in a random order. And it has also
been shown that a different random truth assignment rule yields an approxima-
tion ratio of 3

4
for all formulas. More sophisticated algorithms (using semi-definite

programming) yield improved approximations for Max-2-SAT and Max-SAT.

3

