
CSC373S Lecture 14

• Question 5 in the problem set mentions the FFT which I have temporarily skipped.
The question can be answered without knowing anything about the FFT except that
it enables multiplying two degree n polynomials in O(n log n) (complex) arithmetic
steps. I have skipped it as it is not easy to find a question at the appropriate level
but I will (later) discuss the DFT (Discrete Fourier Transform) problem and the
FFT (Fast Fourier Transform) algorithm for the FFT.

• The missing probability bounds from the last lecture.

1. Testing if C = A ∗ B. Here we assume that the matrix elements are from a
ring R (eg integers) and we let S be an arbitrary subset of R. We will choose
a random vector ~x = (x1, . . . , xn) ∈ Sn meaning that each xi is uniformly and
independently chosen from S.

Given C,A,B we want to prove that Probx∈U
S[(C~x = (A ∗B)~x|C 6= A ∗B]] =

Prob[(C − A ∗B)~x = ~0|C 6= A ∗B] ≤ δ for some δ.

Let D = C −A ∗B and assume D 6= 0n∗n, the all zero matrix. By rearranging
rows and columns of D, wlg say that the first row (d1, ..., dn) 6= ~0 and d1 6= 0.

If D~x =
∑n

i=1 di · xi = 0 then x1 = −
∑

i=2,...,n di · xi/d1. Think of choosing x1

last; then if −
∑

i=2,...,n di ·xi/d1 /∈ S, then Prob[x1 = −
∑

i=2,...,n di ·xi/d1] = 0,
else Prob = 1/|S|.

Hence Prob~x∈USn [C~x = A ∗B~x|C 6= AB] ≤ 1/|S|.

We can either decrease the error probability by increasing the size of S or we
can run this test for several independent trials.

NOTE: We call this a one-sided error algorithm as it can only make an error
for the case that C 6= A ∗B and never makes an error when C = A ∗B.

2. The symbolic determinant problem. Let n×n matrix A have entries aij which
are linear polynomials, say aij ∈ R[x1, . . . , xm] for some ring R. We are testing
if det(A) = 0̄, the identially zero polynomial. We will again have a one sided
error which will always answer correctly when the determinant is the identi-
cally zero polynomial and only has some bounded error probability when the
determinant is not the identically zero polynomial.

Recall that det(A) is a degree n polynomial (i.e. total degree n). Let S be a
subset of the ring R with |S| ≥ 2n. (In fact, |S| ≥ n+1 will suffice). To prove
the desired error probability bound we need to use the Schwartz-Zipple Lemma.

Let f ∈ R[x1, . . . xm] be a non zero polynomial of degree d ≥ 0. Then
Prob~r∈USm [f(r1, . . . , rm) = 0] ≤ d

|S|
.

Note 1: In the previous example of testing C = A ∗ B, we were essentially
using this Lemma with d = 1.

1

The proof of the Lemma is by induction on m (i.e. for univariate polynomials)
and this base case follows from something well known. Namely, any univariate
polynomial of degree d has at most d zeros. Hence the probability is at most
d
|S|

that we will choose r1 such that f(r1) = 0. For the induction step, we view

f as
∑

0≤i≤j x
j
1fj(x2, . . . , xm) and let j be the largest j ≤ d such that fj is not

identically zero. Why must such a j exist? Note that degree of fj ≤ d − j.
Then by induction, Prob[fj(r2, . . . , rm) = 0] ≤ d−j

|S|
. If fj(r2, . . . , rm) 6= 0) then

Prob[f(r1, r2, . . . , rm] = Prob[
∑

1≤i≤j r
i
1fi = 0] ≤ j

|S|
. The probability that

f(r1, . . . , rm) = 0 is at most the sum of the probability that fj is identically
zero and the probability Prob[

∑
1≤i≤j r1fi = 0] given that fj is not identically

zero. That is, the sum of these two probabilities is at most d−j

|S|
+ j

|S|
= d

|S|

which concludes the proof of the Schwartz Zipple Lemma.

Now we apply this to the symbolic determinant problem and we see that the
probability of error (when det(A) = 0̄ is at most 1/2 if say |S| ≥ 2n. This
error probability can be reduced to (1/2)k by repeating the algorthm for k
independent trials.

• Why did we say that |S| ≥ n + 1 would suffice in the symbolic determinant al-
gorithm? Here we are saying that the error probability is say only bounded by
n/n + 1 = 1 − 1/(n + 1). So as before we can argue that in k repeated trials (of a
one sided error algorithm) the error probability is [1− 1

n+1
]k. Is this good?

Fact: [1− 1/t]t ≤ 1
e
for all t ≥ 0 and limt→∞[1− 1/t]t = 1

e
. So letting k = n+1, we

obtain a constant error probability and can further reduce that by more trials. In
general, when we have a one sided error, all we need is a polynomial 1

ns probability
of success at the cost of having to run the algorithm ns times.

Note: Just having an exponentially small probability of success is not good enough!
I refer to algorithms with such small probability of success as being “needle in the
haystack algorithms”.

2

