
CSC373S Lecture 13

• Recall that as a final randomized DC application (very related to Quicksort) we are
considering an approximation algorithm for what is called the (weighted) feedback
arc set problem on tournaments (FAS-Tournaments) and its application to aggregate
(aka universal) ranking and aggregate clustering.

A weighted tournament is a complete directed graph G = (V.E) with a weight func-
tion w(e) = wij. Here complete means that for every i 6= j, the directed edge (i, j)
exists. We will only be interested in weighted tournaments where wij + wji = 1 in
which case we can think of the weights as probabilities. An unweighted tournament
is such a weighted tournament where all edge weights are in {0, 1} ; that is, we can
think of an unweighted tournament as one where for every i 6= j, exactly one of
(i, j) or (j, i) is in E. The weighted feedback arc set problem in a weighted graph
is the problem of choosing a total ordering <π on the vertices (i.e. choosing a per-
mutation π of the vertices ) so as to minimize

∑
(i,j):i<πj

wji. That is, we are trying
to minimize the combined weight of all edges that are inconsistent with the total
ordering given. In the unweighted case this is simply |(i, j) : (j, i) ∈ E|.

• Weighted tournaments give rise to unweighted (majority) tournaments by defining
a graph (V,Ew) where (i, j) in Ew if w(i, j) > w(j, i). If wij = wji then arbitrarily
put either (i, j) or (j, i) in Ew.

Now what does all this have to do with randomized DC algorithms? Ailon, Charikar,
and Newman solve the unweighted FAS on tournaments by an algorithm resembling
quicksort. Their algorithm is a 3-approximation algorithm (and is the first constant
time algorithm for this problem). Then the weighted problem is solved by reduc-
ing to the unweighted majority tournament. The randomized DC algorithm (called
FAS-PIVOT) for the unweighted case is as follows:

FAS-PIVOT(G)
VL := ∅;VR := ∅
Pick random pivot i ∈ V
For all vertices j ∈ V − {i}

If (j, i) ∈ E then VL := VL ∪ {j}
Else VR := VR ∪ {j}

Let GL = (VL, EL) be tournament induced by Vl

Let GR = (VL, EL) be tournament induced by VR

Return [FAS-PIVOT(GL), i,FAS-PIVOT(GR)]

Theorem: FAS-PIVOT provides an expected 3-approximation; that is, E [cost(FAS-
PIVOT]] ≤ 3 · cost(OPT).
Note: To avoid confusion with E as the set of graph edges, I am using E for expec-
tation.

Furthermore, when applied to the majority tournament induced by a weight function
which satisfies the triangle inequality (as well as wij + wji = 1) this becomes (in
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expectation) a 2-approximation. Therefore, given a set of rankings and the Kemeny
cost criteria, let PIVOT be the algorithm for the ranking produced by the FAS-
PIVOT on the majority tournament and cost(OPT) denote the optimal Kemeny
meta ranking. Then E [cost(FAS-PIVOT)] ≤ 2·cost(OPT)

Now this sounds good except that it turns out that a “randomized” or brute force
search also works this well; that is, randomly choose one of the k given rankings
as the aggregate ranking (or take the best of the k rankings). This also provides a
2-approximation. But then one can show that taking the best of the two random
methods yields E [cost(Best)] ≤ (11/7) · cost(OPT).

• Once the expected value of a solution is good, we can insure that with some arbitrar-
ily good probability that we will be at least close to that expected value. Namely,
we can use Markov’s inequality:

For a non negative random variableX with E [X] = µ, Prob[X ≥ (1+ǫ)E [X]] ≤ ( 1
1+ǫ

)

Now suppose we run the same randomized algorithm k times (using new random
bits) viewed as k independent trials of the random variable X = cost[ALG]. Then
the probability that each trial will have cost ≥ (1 + ǫ)E [X] is at most ( 1

1+ǫ
)k . For

example, suppose ǫ = 1/10 so that ( 1
1+ǫ

)k ≤ (10
11
)k. When say k = 10, this probabil-

ity is ≈ 10
26
.

NOTE: This is one of the most important aspects of randomized algorithms. If
there is some (say) constant probability of something good happening in execution
of an algorithm, then we can execute the algorithm many times to improve the
probability to any desired level (at the cost of more time and more random bits).

• Since we have begun to consider randomized algorithms, let us continue this discus-
sion for another week. Here we have been using randomization for solving function
computation (eg median) and optimization problems (eg FAS-Tournaments) which
do not have any probabilistic aspect (as part of the problem definition). It is not
known theoretically speaking if randomization changes the concept of what can and
can’t be computed in polynomial time. But even when randomization is not needed,
it is often simper to think in terms of randomized algorithms and/or can improve
upon the best known deterministic algorithm.

NOTE: There are problem domains (e.g. simulation of a stochastic process, cryp-
tography, sub linear time and space algorithms) where randomization is necessary
for correctness (e.g. security in cryptography) or getting any reasonable estimate of
the correct answer (as in sublinear algorithms).

As already noted, randomization can be used with any algorithmic technique, as
well as in more naive randomization (eg simple sampling) where the probability of
a ”successful trial” is sufficiently high.
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• As our next example, lets consider two similar algebraic problems:
1) Given n × n matrices A,B,C, determine if C = A ∗ B. It could be that you
have developed a very complicated matrix multiplication algorithm that beats the
currently best algorithm (say having time complexity O(n2.3). The algorithm is so
complicated to analyze its correctness that you decide that whenever you use the
algorithm you had better check the output. You could, of course, use a classical or
other known method which will then dominate the complexity and take away any
reason to use the complicated algorithm? So what should you do?

2) We are given an n × n matrix A whose entries aij are say linear polynomi-
als (over m variables X = {x1, . . . , xm}. The determinant of A = det(A) =∑

σ∈Sn

(−1)sgnσΠiai,σ(i) is then a degree n multi-variate polynomial over the vari-
ables in X. We want to determine if det(A) ≡ 0̄ where 0̄ is the identically zero
polynomial. How can we check whether or not det(A) ≡ 0̄. We could use an al-
gorithm for computing determinants but even ignoring the computation steps for
adding and multiplying polynomials, det(A) generally has n! terms so that just
writing out det(A) could be computationally infeasible.

• Checking if C = A ∗B.

Let ~x = (x1, . . . , xn) be a vector. If C = A∗B, then A∗(B ∗~x) = (A∗B)∗~x = C ∗~x.
A Matrix vector product can be computed in O(n2) operations. So to check if
C = A ∗ B we can simply choose random vectors ~x and test if A ∗ (B ∗ ~x) = C ∗ ~x.
Equivalently we are testing if (C − A ∗ B)~x = ~0 where ~0 is the zero vector. Each
such trial costs O(n2). So we are left with the question as to what if the probability
that we will detect C 6= A ∗ B when using this randomized test. If we have some
reasonable probability of a trial detecting C 6= A ∗B then we can run enough trials
to obtain high probability that we will detect C 6= A ∗ B. Of course, if C = A ∗ B
then we will never have A ∗ (B ∗ ~x) 6= C~x.

• Checking if det(A) ≡ 0̄. We basically use the same rather naive idea of checking
for the desired result by choosing random values for the variables in X and then
running a determinant algorithm on the resulting scalar matrix. Again, if we have
a reasonable probability that a random trial will detect det(A) 6= 0̄ (if det(A) is
not the zero polynomial), we can raise the probability by running sufficiently many
trials.

• In the next lecture we will prove that we obtain the necessary probabilty bounds in
these two applications of polynomial identity testing.
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