
CSC373S Lecture 11

• We will now spend a week discussing “divide and conquer”, a paradigm that 3rd
year CS students have seen before. We hinted at a precise general model for greedy
algorithms (but didnt say how we are allowed to order input items). We never did
try to provide a precise definition for what is a DP algorithm. We also won’t try
to precisely define “divide and conquer” (DC) but again will hopefully give enough
examples that we will intuitively know what we mean. And although we do not
have definitions for DP and DC algorithms, it is worth trying to understand how
they differ.

The greedy paradigm seems te imply that we are considering an optimization prob-
lem. There are other (e.g. search) applications but it is true that we usually are
considering optimization (or search) in discussing greedy algorithms. Historically,
DP was developed (in the mid 50s) as an optimization technique. It has evolved as
an algorithmic concept that goes beyond optimziation and search but still is mainly
thought of as an optimization technique.

Divide and conquer DC is a paradigm is probably most often used for function com-
putation but is also used in optimization. Most of the DC applications in the KT
text are about function computation. It is also the case that the text applications
of divide and conquer allow us to improve over a somewhat obvious polynomial
time algorithm so as to produce a faster polynomial algorithm. Our greedy and DP
algorithms often allowed us to improve upon naive exponential time algorithms to
produce substantially more efficient algorithms.

Why do DC in this course? As I said, we want to contrast with dynamic program-
ming. But maybe the main reason is the fact that many of these DC algorthms are
surprising and DC is one of the best known algorithmic design techiques. Moreover,
I will give an application of divide and conquer that provides an efficient approxima-
tion algorithm for a problem that is NP hard and hence (we believe) does not have
an efficient optimal algorithm. Since DC is an idea that is pretty well understood
and studied in previous courses, we will not spend too long in lectures on this topic
but I do expect everyone to read chapter 5 of the text.

• Perhaps the first DC algorithm (and also the first expplictly stated recursive algo-
rithm) is merge sort, invented by von Neumann in 1945. As we all know this is an
O(nlogn) sorting algorithm whereas the obvious sorting requires O(n2).
This is a very typical example of a balanced divide and conquer algorithm:

1. Divide the problem instance I (say of size n) into a smaller subinstances
I1, ..., Ia) (of the same problem). Often these subinstances are roughly of the
same size n/b. In mergesort (and a number of other well know DC algorithms)
a = 2 and b = 2.

1



2. Recursively solve each subinstance

3. Combine the solutions for the subproblems into a solution for the initial prob-
lem.

If the dividing and combining steps take O(nd) time, then the time complexity is
described by the recurrence:

T (n) = aT (n/b) +O(nd).
T (n′) = O(1) for some base case(s) of size n′ ≤ n0

The resulting complexity T (n) to solve problem of size n depends on a, b, d and how
they relate.

There is a so-called master theorem for the asymptotic behavior of this class of
recurrences (as in Jepson’s notes and many texts); namely;

1. when a > bd, then T (n) = Θ(nlogb a); i.e. the recursion dominates the “over-
head” of dividing and combining

2. when a = bd, then T (n) = Θ(nd log n)

3. when a < b, then T (n) = Θ(nd)

In the special case that a = b = 2 and d = 1 as in merge sort, it is easy to see
why T (n) = O(nlogn). The text talks about two ways to determine the complexity
induced by these recurrences. The first and most intuitive is called “unrolling the
recurrence” and is what I tend to do. The second is to “guess” (usually an educated
guess using other known recurrences) a solution and then verify by induction. In
fact, if one unrolls the recurrence and determines a solution, it should be verified
by induction. So lets consider the computation tree of calls. Each level has a O(n)
cost and there are logn levels. To simplify the analysis one often assumes n = 2r

for some r. (For most applications this is not an important assumption but later
when we discuss the FFT this really is an assumption for many uses of the FFT.)

N.B. Looking at that tree, note that all the problem instances are distinct instances!

• Lets consider two examples where b = 2 but a > 2. We begin with polynomial
multiplication (and similarly integer multiplication where we can do the same de-
velopment but just have to deal with “carries”)

Let P and Q be two degree n − 1 polynomials over some ring or field F . We are
considering degree n − 1 polynomials as they have n coefficients and this will sim-
plify notation as we tend to use n as an input size parameter.

We want to compute R(x) = P (x) ∗ Q(x) . The jth coefficient of R is rj =∑
0≤i≤j pi · qj−i. Computing any rj takes j + 1 scalar mults and j scaler addi-

tions or O(j) scalar operations (in F ). Hence the total complexity (for computing

2



all coefficients) is O(n2).

Now consider Karatsuba’s algorithm:

For simplicity let n = 2r for some r. We observe that P and Q can be both
written as the sum of two smaller polynomials, namely P (x) =

∑
0≤i<n/2 pix

i +
∑

n/2≤i≤n−1 pix
i =

∑
0≤i<n/2 pix

i + [
∑

0≤i<n/2 pi+n/2x
i] ∗ xn/2 = P ′

0(x) + P ′
1(x) ∗ x

n/2

Similarly Q(x) = Q′
0(x) +Q′

1(x) ∗ x
n/2

Now the degree of P ′
0, P

′
1, Q

′
0, Q

′
1 is (n− 1)/2.

So P ∗Q = P ′
0 ∗Q

′
0 + (P ′

0 ∗Q
′
1 + P ′

1 ∗Q
′
0) ∗ x

n/2 ++(P ′
1 ∗Q

′
1) ∗ x

n

Hence if we could compute the 3 terms P0 ∗Q0, P0 ∗Q1 + P1 ∗Q0 and P1 ∗Q1 in a
polynomial multiplications (of degree n−1/2) and some number (say c) polynomial
additions then the recurrence would be T (n) = a · T (n/2) +O(n).

Obviously we can have a = 4, but then T (n) = O(n2) and we haven’t gained
anything. But it turns out that a = 3 is achievable (but a = 2 is not achievable)
and this leads to a solution with T (n) = O(nlog

2
3) = O(n1.59).

Note well: The number of poly additions will only effect the constant hidden in the
big O notation but not the asymptotic complexity.

How to compute these three terms in 3 poly mults (of degree (n− 1)/2)?

multiply (P0 + P1) ∗ (Q0 +Q1) = P0 ∗Q0 + P1 ∗Q0 + P0 ∗Q1 + P1 ∗Q1

multiply P0 ∗Q0

multiply P1 ∗Q1

subtract to get P1 ∗Q0 + P0 ∗Q1

Note well: although poly multiplication is defined without subtraction, it can be
sped up using subtraction!

• Strassen’s matrix multiplication (over a ring)

Again assume n = 2r

Write matrices A,B as 2× 2 matrices where each entry is an n/2× n/2 matrix.

Then A * B can be viewed as

C11 = A11 ∗B11 + A12 ∗B21

C12 = A11 ∗B12 + A12 ∗B22

C21 = A21 ∗B11 + A22 ∗B21

C22 = A21 ∗B12 + A22 ∗B22

So now the question is how many n/2 × n/2 matrix multiplications are needed to
compute these four terms.

Obviously it can be done in 8 matrix multiplications.

Note this looks just like the question as to how many scalar multiplications are
needed to compute the multiplication of two 2 × 2 matrices. But in fact there is

3



an important difference in these questions. Whereas scalar multiplication (say over
integers or reals) is commutative, matrix multiplication is not!

So the question is how many multiplications are needed to compute the multiplica-
tion of two 2× 2 matrices without using commutativity of multiplication.

We get the recurrence T (n) = aT (n/2) + O(n2). We can see that for a ≥ 4, the
number of matrix additions will only impact the constant in the big O.

For a = 4, T (n) = O(n2 log n)

For a > 4, T (n) = O(nlog
2
a)

To improve upon the classical O(n3) time bound, we need a < 8. It turns out (and
this is NOT at all easy to see), that a = 7 is possible (but s < 7 is not possible
for non-commutative 2 × 2 matrix multiplication) which results in n × n matrix
multiplication being computable in O(nlog

2
7) which is approximately O(n2.807). The

current best algorithm due to Coppersmith and Winograd (in terms of the exponent
of n) has complexity approximately O(n2.38).

Here (from Wikipedia) are the desired non-commutative multiplications and how
they are combined:

M1 := (A1,1 +A2,2)(B1,1 +B2,2)

M2 := (A2,1 +A2,2)B1,1

M3 := A1,1(B1,2 −B2,2)

M4 := A2,2(B2,1 −B1,1)

M5 := (A1,1 +A1,2)B2,2

M6 := (A2,1 −A1,1)(B1,1 +B1,2)

M7 := (A1,2 −A2,2)(B2,1 +B2,2)

C1,1 = M1 +M4 −M5 +M7

C1,2 = M3 +M5

C2,1 = M2 +M4

C2,2 = M1 −M2 +M3 +M6

Note : Of course, we have not given any insight here into how this algorithm was
created. Before Strassen’s algorithm it was widely believed that Ω(n3) was necessary
for matrix multiplication and the closely related problem of inverting a matrix or
solving a system of equations.

Strassen’s matrix multiplication algorithm had a big impact in computer science and
especially theoretical CS. It was not the first example of a big surprise but it was
such an influential example that it had a big impact in trying to really understand
the intrinsic complexity of computing various problems.

4


