
CSC373S Lecture 10

• Brief review of least cost algorithms

• There are many other notable examples of the kind of DP (achieving an optimal
parse) used in the iterated matrix multiplication problem. Question 3 in assignment
2 uses a similar DP. (Hint: choose an arbitrary edge of the polygon and choose a
vertex to complete a triangle.) For those who have the CLRS text, there is a
discussion (in section 15.5) of the optimal binary search tree problem.

• I want to continue the current discussion of DP algorithms by an application that is
the stating point for a number of genomic applications as well as for spell checkers.
Namely, consider the edit distance problem, which the KT text refers to as the
sequence alignment problem. (I think “alignment” implies a more limited set of
operations so I prefer edit distance.) We are given two strings X and Y say over a
finite alphabet Σ. For a spell checker, Σ = {a, b, c, . . . z} and for genome applications
Σ = {A,C.G, T}. As a cost/distance problem, we are trying to compute the cost
of “aligning” the two strings (or more generally to me, the distance between the
strings in terms of edit operations that need to be performed). This cost or distance
between the strings depends on what operations are allowed and the cost of each
operation. For example, the text considers a “gap cost” δ to delete a symbol and
a “mismatch cost” αpq to “line up” symbols p and q in Σ. There could be many
other edit operations, such as transposing adjacent symbols, reversing a substring,
deleting many consecutive symbols at a fixed cost + cost δ′ /per delete with δ′ < δ,
different costs for different deletions, different costs for deletions and insertions, etc.
Returning to the basic problem as defined in the text, let X = x1x2 . . . xm and
Y = y1y2 . . . yn. The DP approach is to define a semantic array M ′[i, j] = minimum
cost to align the substrings x1 . . . xi and y1 . . . yj. In this alignment problem, we are
trying to define an optimal way to match symbols in X with symbols in Y . Our
choices here are to match symbols or delete a symbol from one of the strings. That
is, the computational array is then M [i, 0] = i · δ, M [0, j] = j · δ, and for i, j ≥ 1,
M [i, j] = min{A,B,C} where A = M [i − 1, j − 1] + αxiyj , B = δ + M [i − 1, j],
C = δ +M [i, j − 1].

• We conclude our current discussion of DP algorithms by noting that sometimes they
can be used to derive an exponential algorithm but still one that is better than a
more naive algorithm. For example, consider the travelling salesman problem. Lets
say we have a directed graph G = (V,E) with |V | = n and edge costs {c(u, v)}.
If (u, v) /∈ E, we can add (u, v) to E by setting c(u, v) = ∞. So without loss of
generality we can assume all edges exist.
The celebrated traveling salesman problem asks for a minimum cost simple cycle
that includes all the vertices (such a cycle is called a Hamiltonian cycle HC). Se-
lecting any node u ∈ V , a Hamiltonian cycle is then defined by a permutation on
the remaining n − 1 nodes plus the edge back to u. It follows that a brute force
solution that considers every HC to find the minimum cost HC would costs O(n!)
which is very roughly about O(nn). We can use DP to achieve complexity O(2n)
which is still not practical for large n but is substantially better than nn.

1

Here is the DP approach.: Fix an arbitrary starting node s. Consider the following
semantic array: For each t ∈ V and S ⊆ V − {s, t}, H ′(S, t) is the minimum cost of
a simple path π from s to t where the set of internal nodes of π is equal to S (in
some order). The desired optimum cost is then minv 6=s H

′(V − {s, v}, v) + c(v, s).
We recursively compute H ′(S, t) for all t ∈ V and S ⊆ V − {s, t} by H(S, t) =
minu∈S−{s,t} H(S − {u}, u) + c(u, t). The basis is H(∅, t) = c(s, t).

2

