
CSC373S Algorithm Design and Analysis Lecture 1 Instructor: A. Borodin

Text: “Algorithm Design ” by Jon Kleinberg and Eva Tardos

• Overall goal of course: trying to make algorithm design and analysis into a coher-
ent field of study. We will be concentrating on discrete computation considering
problems from a number of different areas such as scheduling, logic, graph theoretic
problems, geometric problems, algebraic and number theoretic problems.

• Different types of computational problems

1. functions: f : D → D;
e.g. given an integer x ≥ 2, output y = the smallest prime factor of x. (If x is
prime then y = x.)

Note: in CS, we think more computationally and we often assume that the
inputs/outputs have been encoded as strings over some finite alphabet; i.e.
D = Σ∗. For the above problem, it is important to think of the complexity as
a function of the length of the (say binary or decimal) encoding of x.

2. Search problems: For a relation R ⊆ D ×D, given x find y (if it exists) such
that R(x,y); if no such y exists then say so.

e.g. FACTOR(x, y) iff x and y are (encodings of) integers and y is a proper
factor of x.

Given a set of jobs x, and a schedule y, R(x, y) iff schedule y achieves some
criteria (eg no job is scheduled after its deadline, at least z ”non-conflicting”
jobs are scheduled, etc.)

Given prop. formula F and truth assignment τ , R(x, y) iff τ satisfies F .

3. Optimization problems: a search problem with an additional objective function
which is being optimized.

e.g. Given set of jobs, find a schedule that minimizes the maximum lateness;
find a schedule that maximizes the number/profit of non-conflicting jobs, etc.

For optimization problems we are often willing to (or must) sacrifice optimality
for efficiency and then we are interested in obtaining a solution which is ”close”
to optimal whenever this is possible.

1



• In this course, most problems we will study are optimization problems as this allows
us to explore a wide variety of general algorithmic techniques. The entire course
will concern “discrete” computation say in contrast to numerical optimization.

• Common algorithmic techniques

Most courses and texts in this area organize the material in terms of common al-
gorithmic techniques/paradigms/meta-algorithms. (Alternatively, one could chose
some basic problems (or problem areas such as scheduling problems, graph prob-
lems, geomtric problems, logic problems) and then apply a number of techniques to
solving each problem.)

1. Greedy algorithms

2. Divide and conquer

3. Dynamic programming (DP)

4. Flow based algorithms

5. Local search

6. LP and other “mathematical programming” approaches (eg SDP)

(a) LP relaxations of an IP

(b) primal dual algorithms

• Additional general methods we probably wont discuss

1. algebraic algorithms

2. backtracking and branch and bound; brute force

3. genetic algorithms

4. generalizations of local search (eg simulated annealing)

5. Multiplicative weights update

• Additional algorithmic topics

1. Randomized algorithms: Note: this is NOT a meta-algorithm but an additional
computational idea that can be utilized in conjunction with any algorithmic
technique.

2. Transforming or reducing one problem to another. We often solve a given
problem P1 by using a subroutine for a problem P2.

In CSC 363/365, we use this idea to show that if P1 is a “hard problem”, then
P2 must also be hard. Here in CSC373 we use such problem reductions to show
how to utilize a solution for P2 to obtain a solution to P1.
Note: The first question in the problem set is essentially a reduction.

3. Approximation algorithms. Note: this is not a meta-algorithm but rather we
apply the above techniques to obtain (hopefully) good approximations to an
optimal solution.

2



The grading scheme will be based on 3 problem sets (5% each), each of which will be
immediately followed by a term test (15% each), and a final exam (40%). As soon as an
assignment is due (on a Wednesday) and collected, we will discuss the solutions in class
and a term test will follow (on Friday). Therefore, no late asssignments will be accepted.
See the course web page (www.cs.toronto.edu/˜bor/373s11) for the dates of all problem
sets and tests.

Office hours (SF 2303B): To be announced. Tentatively: T,R 2-3. Beyond any posted
office hours, students are always welcome to make appointments and/or drop by to see if
I am available. In general, I prefer speaking to people in person than via email!

3


