
CSC373S Problem Set 2 Spring, 2008

Due: Wed, March 5, beginning of lecture

NOTE: Each problem set only counts 5% of your mark, but it is important to do your
own work (but see below). Similar questions will appear on the first term test. You may
consult with others concerning the general approach for solving problems on assignments,
but you must write up all solutions entirely on your own. Anything else is plagiarism,
and is subject to the University’s Code of Behavior. You will receive 1/5 points for any
(non bonus) question/subquestion for which you say “I do not know how to answer this
question”. You will receive .5/5 points if you just leave the question blank.
Advice: Do NOT spend an excessive amount of time on any question and especially not
on any bonus questions (if given). If you wish to spend “free time” thinking about (say)
bonus questions that is fine but you should not sacrifice the time needed for other courses.

1. Suppose we are given two sorted lists X1 and X2, each containing n distinct numbers
and X1 ∩ X2 = ∅. Sketch an O(logn) time divide and conquer algorithm for
computing the median of X1 ∪X2. Define the median as the element of rank ⌈n/2⌉
so that, for example, in a list of 6 elements ordered so that a1 ≤ a2 . . . ≤ a6, a3 is
the median value. [15 points]

2. (Bonus question) We are now given n sorted lists X1, X2, . . . , Xn, each containing
n distinct numbers and X i ∩ Xj = ∅ for all i 6= j. Can you derive an algorithm
with time complexity o(n2) for computing the median of X1 ∪ X2 . . . ∪ Xn? That
is, can you do asymptotically better than using a linear time algorithm for finding
the median of an unordered set of k elements? [? points]

3. To simplify the discussion of some divide and conquer algorithms we made some
assumptions. In the closest pair problem we assumed that all the coordinate xi

values and all th yi values were distinct, and in the counting inversions problem we
assumed that all ai elements were distinct.

(a) What if any changes need to be made to the nearest pair algorithm if we do
not assume that all coordinate values are distinct? [5 points]

(b) In the counting inversions problem when elements are not necessarily distinct,
let us say that “ai = aj for i < j” is not an inversion. What if any changes
need to be made to the counting inversions algorithm? [5 points]

(c) In the counting inversions problem when elements are not necessarily distinct,
let us say that “ai = aj for i < j” is an inversion. What if any changes need
to be made to the counting inversions algorithm? [5 points]

4. Consider the one machine weighted interval scheduling problem. That is, the inputs
are intervals Ij = (sj, fj , vj) where vj > 0 is the positive value of an interval (if
scheduled). Provide a DP algorithm for computing the number of different optimal
solutions. That is, provide semantic and computational arrays for the problem (in-
cluding any base cases). What is the time complexity of your algorithm? (Solution
S1 is different from solution S2 if S1 6= S2 as sets.)

[20 points]

1

5. This problem concerns a one dimensional clustering problem. Let X = {x1, . . . , xn}
be n distinct real valued points with say x1 < x2 . . . < xn. A k-clustering of X
is a partitioning of X into k disjoint subsets (clusters) C1, . . . , Ck. The diameter
diam(C) of a cluster C is defined as max{|x − y| : x, y ∈ C}. We want to find
k-clustering C1, . . . , Ck so as to minimize maxidiam(Ci).
Provide a DP algorithm for computing an optimal k-clustering. That is, provide se-
mantic and computational arrays for the problem (including any base cases). What
is the time complexity of your algorithm?

[20 points]

6. The knapsack problem is often called the {0, 1} knapsack problem since for each
item it is either taken 0 or 1 times. Suppose we consider the following two variants of
the {0, 1} knapsack problem. In both cases, the input is {(v1, w1), . . . , (vn, wn); W}
where vi (respectively, wi) is the value (resp. weight) of the ith item and W is the
total weight limit of the knapsack. All input parameters are positive integers.

(a) The integer knapsack problem assumes an unlimited supply of each item and
the knapsack can contain any integral number of copies of an item. That
is, a feasible solution is a vector µ = (m1, . . . , mn) where each mi a non-
negative integer such that

∑
miwi ≤ W and the value of such a solution

is
∑

mivi. Provide a DP algorithm for computing an optimal solution to the
integer knapsack problem. That is, provide semantic and computational arrays
for the problem (including any base cases). What is the time complexity of
your algorithm assuming W ≤ n2?

[10 points]

(b) In the {0, 2, 3} knapsack problem, every item can be taken zero, twice or three
times (but not once or more than three times). That is, a feasible solution is
a vector µ = (m1, . . . , mn) where each mi ∈ {0, 2, 3}. Provide a DP algorithm
for computing an optimal solution to the integer knapsack problem. That is,
provide semantic and computational arrays for the problem (including any base
cases). What is the time complexity of your algorithm assuming W ≤ n2?

[10 points]

7. Consider the following triangulation problem. The input is a sequence < z0, z1, . . . , zn−1 >
of points in the Euclidean plane where this sequence forms a convex polygon P . A
trangulation of P partitions P into n−2 triangles T0, T1 . . . , Tn−3 where Ti has edges
zi, zi+1(modn), zv(i) where v(i) /∈ {i, i+1(modn)}. The cost c(Ti) of a triangle Ti is its
perimeter, the Euclidean length of the sides of the triangle and the cost of a trian-
gulation is the sum of the triangle costs. Show how to use dynamic programming
to compute an optimal cost triangulation.

[20 points]

2

