
CSC373: Algorithm Design, Analysis and
Complexity
Fall 2017

Allan Borodin

November 14, 2017

1 / 51

Week 9 : Annoucements

Assignment 2 was due earlier today at 10:00 AM.
We will go over solutions today.

Term test 2 is tomorrow 5-6 in the exam center, room 200. The test
will cover flow networks, polynomial time transformations and
reductions, and NP completeness. The usual one sheet hand-written
notes are allowed.

Next assignment: The questions for Assignment 3 have been posted.
Note that the due date has now been postponed to Monday, Dec 4 at
10:00 AM. Solutions will be posted by 10:10 AM on December 4.

I will continue to try to answer questions on Piazza as promptly as I
can. In most cases, students are answering question correctly and we
appreciate that being done. In some cases, questions are being asked
that were already discussed in lectures. If you miss a lecture, you
should find out what was discussed which can go beyond what the
lecture slides.

2 / 51

More announcements

As previously discussed, we are merging Greg’s and Sasa’s tutorial
sections into one tutorial so as to save TA hours (and given the low
attendance). Both Greg’s section in BA2139 and Sasa’s section in
BA2145 will now meet in BA2145.

There is no tutorial this week as that is when we are holding the term
test for all students (excpet those in the morning section who have
legitimate conflicts).

3 / 51

Todays agenda

Discuss solutions to Assignment 2.

We will be beginning approximation algorithms.

We’ll first consider a couple of online and greedy algorithms.

One general method to obtain an approximation algorithm (often used
for NP hard problems) is to use an LP relaxation of an IP formulation
of an optimization problem. We then need to “round” the optimal LP
solution to an integral solution and analyze the approximation ratio.

We will also look at other algorithmic paradigms (e.g. greedy,
dynamic programming, local search) that are used to derive
approximations to optimality.

We will see that NP hard optimization problems will have di↵erent
possible approximation ratios.

In our next topic, randomized algorithms, we will see how
randomization is sometimes used to fascilitate approximations.

4 / 51

Todays approximation algorithms agenda

Strict and asymptotic approximation ratios.
The makespan problem for identical machines.
A simple online 2-approximation algorithm for the vertex cover
problem. A greedy algorithm that does not work.
An IP formulation of the weighted vertex cover problem and its
rounding to produce a 2-approximation. The integrality gap.
A greedy approximation for the weighted interval selection problem
when the value of an interval is equal to the interval length. A simple
charging algorithm.
A greedy algorithm for axis-aligned weighted rectangles in 2-space.
Abstraction of previous problem to k + 1 claw free graphs.
A greedy 2-approximation algorithm for the unweighted JISP problem.
Abstract of JISP to “inductive independence graphs”.
A dynamic programming algorithm for the knapsack problem that
leads to a fully polynomial time approximation algorithm (FPTAS)
algorithm for the knapsack problem.
Brief discussion of local search for approximation.

5 / 51

The why of approximation algorithms

We have already seen that many optimization problems are NP hard in the
sense that computing an optimal solution for the optimization problem
immediately solves a corresponding NP complete decision problem.

For example, solving the graph colouring optimzation problem immediately
lets us determine if a graph has a 3-colouring. Similarly solving the
Max-Sat optimization problem (i.e. finding a truth assignment that
maximizes the number of satisfied clauses in a CNF formula) immediately
lets us decide if a graph is satifiable.
I hope this is obvious

But NP-hardness does not preclude being able to find solutions which
yield a “good” approximation to the value (for a maximization problem) or
cost (for a minimization problem) of an optimal solution.

Approximation algorithms are also often used for optimization problems for
which we do know optimal algorithms. But why?

Simply stated, the
approximation algorithm may be more e�cient and/or easier to implement
and/or other considerations prevent using an optimal algorithm.

6 / 51

The why of approximation algorithms

We have already seen that many optimization problems are NP hard in the
sense that computing an optimal solution for the optimization problem
immediately solves a corresponding NP complete decision problem.

For example, solving the graph colouring optimzation problem immediately
lets us determine if a graph has a 3-colouring. Similarly solving the
Max-Sat optimization problem (i.e. finding a truth assignment that
maximizes the number of satisfied clauses in a CNF formula) immediately
lets us decide if a graph is satifiable.
I hope this is obvious

But NP-hardness does not preclude being able to find solutions which
yield a “good” approximation to the value (for a maximization problem) or
cost (for a minimization problem) of an optimal solution.

Approximation algorithms are also often used for optimization problems for
which we do know optimal algorithms. But why? Simply stated, the
approximation algorithm may be more e�cient and/or easier to implement
and/or other considerations prevent using an optimal algorithm.

6 / 51

Approximation ratios for minimization problems

In order to measure how well we are approximating an optimization
problem (with respect to the worst case perspective), we define the
approximation ratio of an algorithm ALG .

For a minimization problem, we say that ALG has an approximation c �
(which can be a constant or a function of the input “size” n) if for all
input instances I we have Cost[ALG (I)] c · Cost[OPT (I] where OPT
is an optimal solution.

This is called a strict approximation ratio (which is what we will mainly
consider today). There is an asymptotic approximation ratio defined as

limCost[OPT (I)]!1
Cost[ALG(I)]
Cost[OPT (I] .

7 / 51

Approximation ratios for maximization problems

We have the analogous concept for maximization problems. One possible
way to state a strict approximation ratio for a maximizatio problem is as
follows:
ALG has an approximation c � 1 (which can be a constant or a function
of the input “size” n) if for all input instances I we have
Profit[ALG (I)] � 1

cProfit[OPT (I] where OPT is an optimal solution.

Whereas for minimization problems, approximation ratios are always such
that c � 1, for maximization problems, one often states approximation
ratios as a fraction of the optimal profit (i.e., as 1

c where c � 1. So if you
are reading about approximation ratios for a maximization problem, you
will often see claims like an algorithm achieves (for example)
approximation ratio 3

4

.

There is an analogous concept of asymptotic approximation ratios for
maximization problems.

8 / 51

The approximation landscape

We repeat some comments from Week 3.

In term of computing optimal solutions, all “NP complete
optimization problems” (i.e. optimization problems corresponding to
NP complete decision problems) can be viewed (up to polynomial
time) as a single class of problems.

But in the world of approximation algorithms, this single class splits
into many classes of approximation guarantees. Up to our believed
complexity assumptions, we next discuss these possibilities.

Definition

1 An FPTAS (Fully Polynomial Time Approximation Scheme) is a (1 + ✏)
approximation algorithm using poly time in the input encoding and 1

✏ .

2 A PTAS (Polynomial Time Approximation Scheme) is a (1 + ✏)
approximation algorithm using poly time in the input encoding but can have
any complexity in terms of 1

✏ .

9 / 51

Di↵erent approximation possibilities for NP
complete optimization

Given widely believed complexity claims

1 An FPTAS
I e.g. the knapsack problem

2 A PTAS but no FPTAS
I e.g. makespan (when the number of machines m is not fixed but rather

is a parameter of the problem.
3 Having a constant c > 1 approximation but no PTAS

I e.g. Vertex cover and JISP to be discussed today
4 An ⇥(log n) approximation and no constant approximation

I e.g. set cover Hn essentially tight.
5 No n1�✏ approximation for any ✏ > 0

I e.g. graph colouring and MIS for arbitrary graphs

Here n stands for some input size parameter (e.g. size of the universe for set
cover and number of nodes in the graph for colouring and MIS).

10 / 51

An aside: The bin packing problem

Before we discuss the makespan problem, lets take a short diversion to
mention the following related bin packing problem:
Given: B and {a

1

, a
2

, . . . , an} where each ai B , the bin size.
Goal: Pack the elements {ai} into the fewest number of bins such that
sum of the elements in a bin does not exceed the bin size B .

I am mentioning the bin packing problem as it is one of the most studied
NP hard approximation problems. Why NP hard?

Since the PARTITION problem is NP hard, we cannot distinguish between
needing 2 or 3 bins by choosing B = (

P
i a1)/2. Hence the strict

approximation ratio is at least 3

2

if we assume P 6= NP .

There are online algorithms that produce constant approximation ratios.
For example, the online algorithm “best fit greedy” achieves approximation
17

10

There are other algorithms that for any input instance I pack the items in
OPT (I) + o(OPT (I)) Hence the asymptotic approxination ratio is 1,

11 / 51

An aside: The bin packing problem

Before we discuss the makespan problem, lets take a short diversion to
mention the following related bin packing problem:
Given: B and {a

1

, a
2

, . . . , an} where each ai B , the bin size.
Goal: Pack the elements {ai} into the fewest number of bins such that
sum of the elements in a bin does not exceed the bin size B .

I am mentioning the bin packing problem as it is one of the most studied
NP hard approximation problems. Why NP hard?
Since the PARTITION problem is NP hard, we cannot distinguish between
needing 2 or 3 bins by choosing B = (

P
i a1)/2. Hence the strict

approximation ratio is at least 3

2

if we assume P 6= NP .

There are online algorithms that produce constant approximation ratios.
For example, the online algorithm “best fit greedy” achieves approximation
17

10

There are other algorithms that for any input instance I pack the items in
OPT (I) + o(OPT (I)) Hence the asymptotic approxination ratio is 1,

11 / 51

Online and greedy algorithms

We recall that greedy algorithms consider the input items in some order
and for each input item make an irrevocable “greedy” decision.

An online algorithm processes the input items in the order given (i.e. the
algorithm has no control over the order of input arrivals).

For our first approximation algorithm we consider the makespan problem
on m identical machines. Similar to the question on the Assignment, the
goal here is to schedule n jobs (each job Ji having a processing time or load
pi)on m identical machines so as to minimize the latest completion time.

This is an NP hard optimization problem even for just m = 2 since an
optimal algorithm for 2 machines solves the PARTITION decision problem.

Since we showed the PARTITION problem is NP complete, we cannot
hope to have a polynomial time algorithm that produces an optimal
solution for all input instances again if we assume that P 6= NP .

12 / 51

Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

The approximation ratio for this algorithm is 2� 1

m ; that is, for any
set of jobs J , CGreedy (J) (2� 1

m)COPT (J).
I CA denotes the cost (or makespan) of a schedule A.
I OPT stands for any optimum schedule.

Basic proof idea: OPT � (
P

j pj)/m;OPT � maxjpj
What is CGreedy in terms of these requirements for any schedule?

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT�max
j

T[j] and OPT� 1
m

n�

j=1

T[j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[j] � OPT. To finish the proof, we must show that Total[i] � T[j] � OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]� T[j] � Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]� T[j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]� T[j] � 1
m

m�

i=1

Total[i] =
1
m

n�

j=1

T[j] � OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ! OPT

! OPT

i

m
a

k
es

p
a

n

Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

[picture taken from Je↵ Erickson’s lecture notes]
13 / 51

Comments on Graham’s online greedy algorithm

Graham’s algorithm is considered to be the first paper formally
studying worst case approximation algorithms.

In the online “competitive analysis” literature the ratio CA
COPT

is called
the competitive ratio and it allows for this ratio to just hold in the
limit as COPT increases. This is then just the asymptotic
approximation ratio.

The approximation ratio for the online greedy is “tight” in that there
is a sequence of jobs forcing this ratio. The nemesis input sequence is
a sequence of m(m � 1) jobs each with processing time pi = 1 and a
final job with processing time pm(m�1)+1

= m. The greedy algorithm
has makespan m + (m � 1) = 2m � 1 while an optimal schedule has
makespan m. Why?

This bad input sequence suggests a better algorithm, namely the LPT
(o✏ine) greedy algorithm.

14 / 51

The LPT algorithm for the identical machines
makespan problem

Graham’s LPT algorithm

Sort the jobs so that p
1

� p
2

. . . � pn and then greedily schedule jobs on
the least loaded machine.

The (tight) approximation ratio of LPT is
�
4

3

� 1

3m

�
.

It is believed that this is the best “greedy” algorithm but how would
one prove such a result? This of course raises the question as to what
is a greedy algorithm.

Assuming we maintain a priority queue for the least loaded machine,
I the online greedy algorithm would have time complexity O(n logm)

which is (n log n) since we can assume n � m.
I the LPT algorithm would have time complexity O(n log n).

15 / 51

The weighted and unweighted vertex cover problem

The vertex cover optimization problem:
Given a graph G = (V ,E)
Goal: To compute a minimum size cover V 0; that is, a subset V 0 ✓ V
such that for all e = (u, v) 2 E , either u or v (or both) are in V 0.

In the weighted case, there is a weight function w : V ! R�0 and the goal
is to minimize the weight of a cover.

NOTE: We are maintaining a worst case perspective and one can always
ask about computing an optimal or approximate solution when inputs are
restricted or coming from some distrubution.

For this problem (and, in general, for graph problems) there are two
obvious choices for what is an input item; namely,
(1) The edges are the input items and each edge is repreesented by its
endpoints
(2) The vertices are the input items and each vertex is represented by its
vertex or edge adjacency list.

16 / 51

An online greedy algorithm in the edge input model

We first consider the edge input model

Online greedy algorithm for unweighted vertx cover

V 0 = ?;E 0 = E % E 0 is the set of currently uncovered edges
M = ? % The algorithm is also creating a maximal mathching
While E 0 6= ?
Let e = (u, v) be the next uncovered edge
E 0 = E 0 \ { all edges adjacent to u or v}
V 0 = V 0 [{u, v}
M = M [{e}

End While

Claim: |V 0| 2 · |V ⇤| for any vertex cover V ⇤.
Proof: The algorithm is creating a maximmal matching and a vertex cover
must contain at least one vertex for each edge in a maximal matching.
The algorithm is taking both edges.

17 / 51

A greedy approximation algorithm in the vertex
adjacency model

We will next consider the vertex adjacency input model. The “natural”
greedy algorithm in this model chooses its next vertex to process and add
to the vertex cover by choosing the vertex adjacent to the most uncovered
edges.

Online greedy algorithm for unweighted vertex cover

V 0 = ?;E 0 = E % E 0 is current uncovered edges
While there are any uncovered edges
Let v = (u

1

, . . . , udv) be the input vertex such that the number of edges
(v , ui) 2 E 0 is maximum

V 0 = V 0 [{v};
Remove all (v , ui) from E 0

End While

Surprisingly, although it is not obvious, this algorithm is does not result in
a constant approximation. Rather the approximation ratio is
Hdmax ⇡ ln dmax where dmax is the maximum vertex degree. .

18 / 51

LP relaxation and rounding

One standard way to use IP/LP formulations is to start with an IP
representation of the problem and then relax the integer constraints
on the xj variables to be real (but again rational su�ce) variables.
We start with the well known simple example for the weighted vertex
cover problem. Let the input be a graph G = (V ,E) with a weight
function w : V ! <�0. To simplify notation let the vertices be
{1, 2,n}. Then we want to solve the following “natural IP
representation” of the problem:

I Minimize w · x
I subject to xi + xj � 1 for every edge (vi , vj) 2 E
I xj 2 {0, 1} for all j .

The intended meaning is that xj = 1 i↵ vertex vj is in the chosen
cover. The constraint forces every edge to be covered by at least one
vertex.
Note that we could have equivalently said that the xj just have to be
non negative integers since it is clear that any optimal solution would
not set any variable to have a value greater than 1.

19 / 51

LP rounding for the natural weighted vertex cover IP

The “natural LP relaxation” then is to replace xj 2 {0, 1} by
xj 2 [0, 1] or more simply xj � 0 for all j .

It is clear that by allowing the variables to be arbitrary reals in [0,1],
we are admitting more solutions than an IP optimal with variables in
{0, 1}. Hence the LP optimal has to be at least as good as any IP
solution and usually it is better.

The goal then is to convert an optimal LP solution into an IP solution
in such a way that the IP solution is not much worse than the LP
optimal (and hence not much worse than an IP optimum)

Consider an LP optimum x⇤ and create an integral solution x̄ as
follows: x̄j = 1 i↵ x⇤j � 1/2 and 0 otherwise. We need to show two
things:

1 x̄ is a valid solution to the IP (i.e. a valid vertex cover).
2

P
j wj x̄j 2 ·

P
j wjx⇤j 2 · IP-OPT ; that is, the LP relaxation results

in a 2-approximation.

20 / 51

The integrality gap

Analogous to the locality gap (that we will discuss for local search),
for LP relaxations of an IP we can define the integrality gap (for a
minimization problem) as maxI

IP�OPT
LP�OPT ; that is, we take the worst

case ratio over all input instances I of the IP optimum to the LP
optimum. (For maximization problems we take the inverse ratio.)

Note that the integrality gap refers to a particular IP/LP relaxation of
the problem just as the locality gap refers to a particular
neighbourhood.

The same concept of the integrality gap can be applied to other
relaxations such as in semi definite programming (SDP).

It should be clear that the simple IP/LP rounding we just used for the
vertex cover problem shows that the integrality gap for the previously
given IP/LP formulation is at most 2.

By considering the complete graph Kn on n nodes, it is also easy to
see that this integrality gap is at least n�1

n/2 = 2� 1

n .

21 / 51

Integrality gaps and approximation ratios

When one proves a positive (i.e upper) bound (say c) on the
integrality gap for a particular IP/LP then usually this is a
constructive result in that some proposed rounding establishes that
the resulting integral solution is within a factor c of the LP optimum
and hence this is a c-approximation algorithm.
When one proves a negative bound (say c 0) on the integrality gap
then this is only a result about the given IP/LP. In practice we tend
to see an integrality gap as strong evidence that this particular
formulation will not result in a better than c 0 approximation. Indeed I
know of no natural example where we have a lower bound on an
integrality gap and yet nevertheless the IP/LP formulation leads
“directly” into a better approximation ratio.
In theory some conditions are needed to have a provable statement.
For the VC example, the rounding was “oblivious” (to the input
graph). In contrast to the Kn input, the LP-OPT and IP-OPT
coincide for an even length cycle. Hence this integrality gap is a tight
bound on the formulation using an oblivious rounding.

22 / 51

Some charging arguments for approximation
guarantees

In a somewhat di↵erent approach to proving approximation bounds, we
want to show how to use a charging argument; that is, in the next couple
of examples, we will charge the weight of any algorithm (and in particular
an optimal algorithm) to items in a greedy solution. The same idea can be
used in local search algorithms.

Note that we considered a charging argument in proving the optimality of
the greedy EFT algorithm for the unweighted interval scheduling problem.

Let first consider a problem for which there is an optimal algorithm.
Namely, lets consider a restricted version of the weighted interval
scheduling problem (on one machine) where the weight (or valule) of any
interval is equal to its length.

We know there is an optimal dynamic programming algorithm for the
weighted interval scheduling problem so this is just an exercise to show the
charging method.

23 / 51

A simple greedy algorithm for proportional profit
interval scheduling

Consider the greedy algorithm that sorts by non-increasing weight (=
processing time) and accepts greedily (i.e. if an interval doesn’t conflict
with previously selected intervals, then select it).

Claim: This is a 3-approximation (or 1

3

approximation for those who prefer
fractional approximations for maximization problems). That is the weight
of the greedy solution is at least 1

3

of an optimal solution.
Proof: For every interval in say an OPT solution, we will charge its weight
to a unique item in the Greedy solution. This charging will be done so as
to guarantee that the charge to say interval I in the greedy solution will be
at most 3 times its own weight. Remainder of proof on board
Note: In graph theoretic terms, we are approximating the maximum
weighted independent set problem in an interval graph.

24 / 51

The weighted independent set problem (WISP) for
the intersection graph of axis parallel translates of a
rectangle

Consider an axis parallel rectangle R in 2-space. An axis paralalel translate
of R is a copy of R shifted left, right, down, up. We consider the
intersection graph of n translates of a fixed rectangle R where like interval
graphs, the intersection graph has an edge whenever the rectangles
intersect. Each translate Rj has a weight wj and the goal in to choose a
non intersecting subset S of these n translates so as to maximize the
weight of the rectangles in S .

Claim: Consider any one of the n rectanngles, call it R⇤ and let R
1

, . . .Rm

be the translates that intersect R⇤. Then there can be at most 4 of these
Ri that do not intersect each other. Why?

As all translates have the same dimension, all the intersecting translates
must intersect at some corner of R⇤.

25 / 51

The weighted independent set problem (WISP) for
the intersection graph of axis parallel translates of a
rectangle

Consider an axis parallel rectangle R in 2-space. An axis paralalel translate
of R is a copy of R shifted left, right, down, up. We consider the
intersection graph of n translates of a fixed rectangle R where like interval
graphs, the intersection graph has an edge whenever the rectangles
intersect. Each translate Rj has a weight wj and the goal in to choose a
non intersecting subset S of these n translates so as to maximize the
weight of the rectangles in S .

Claim: Consider any one of the n rectanngles, call it R⇤ and let R
1

, . . .Rm

be the translates that intersect R⇤. Then there can be at most 4 of these
Ri that do not intersect each other. Why?

As all translates have the same dimension, all the intersecting translates
must intersect at some corner of R⇤.

25 / 51

A greedy algorithm for the WISP for the intersection
graph of axis parallel translates of a rectangle

Following the discussion for the weighted interval selection problem with
proportional weights, we again consider a greedy algorithm that sorts by
non-increasing weight; i.e. w

1

� w
2

. . . � wn and accepts greedily. What is
the approximation ratio of this algorithm and how would you prove it?.

We use a charging argument and the property that for any rectangle R in
the greedy solution, there are at most 4 non-intersecting (i.e.,
independent) rectangles in an OPT solution intersecting R .

There is a nice graph theoretic way to abstract this independence property.
Definition A graph G = (V ,E) is k + 1 claw free if for every v 2 V , there
are at most k independent vertices in the neighbourhood
Nbhd(v) = {u 2 V : (v , u) 2 E}.

Often, but not always, “intersection graphs” are k + 1 claw free for some
k . In particular, the previous example was a 5 claw free graph (given the
assumption of having one fixed dimension). The interval selection problem
does not result in a k + 1 claw free graph for any fixed k . Why?

26 / 51

A greedy algorithm for the WISP for the intersection
graph of axis parallel translates of a rectangle

Following the discussion for the weighted interval selection problem with
proportional weights, we again consider a greedy algorithm that sorts by
non-increasing weight; i.e. w

1

� w
2

. . . � wn and accepts greedily. What is
the approximation ratio of this algorithm and how would you prove it?.
We use a charging argument and the property that for any rectangle R in
the greedy solution, there are at most 4 non-intersecting (i.e.,
independent) rectangles in an OPT solution intersecting R .

There is a nice graph theoretic way to abstract this independence property.
Definition A graph G = (V ,E) is k + 1 claw free if for every v 2 V , there
are at most k independent vertices in the neighbourhood
Nbhd(v) = {u 2 V : (v , u) 2 E}.

Often, but not always, “intersection graphs” are k + 1 claw free for some
k . In particular, the previous example was a 5 claw free graph (given the
assumption of having one fixed dimension). The interval selection problem
does not result in a k + 1 claw free graph for any fixed k . Why?

26 / 51

The WISP for k + 1 claw free graphs

The suggested greedy algorithm for the intersection graph of axis parallel
translates of a rectangle will always provide a solution that has value at
least 1

4

of an optimal solution.

The charging argument shows us how to charge the weight of rectangles in
an OPT solution to a rectangle R in the greedy solution. By the greedy
ordering any rectangles intersecting R have weight no more than the
weight of R . There can be at most 4 disjoint rectangles intersecting R ,
and this completes the charging argument.

The same argument can be used to show that the WISP for k + 1 claw
free graphs can be approximated by a greedy algorithm resulting in a
solution that obtains at least a fraction 1

k of an optimal solution.

27 / 51

The Job Interval Selection Problem (JISP)

We consider the following extension of interval scheduling. In the JISP
problem, we are given intervals Ij = (s,fj ,Cj) where sj and tj are as before
the start and finish time of the interval. In addition, Cj is the class or job
of which Ij is member. A set of intervals S is a feasible solution if (as
before) the intervals in S do not intersect and for each class C there is at
most one interval in S having class C .

In the unweighted version, our goal is to compute a maximum size feasible
set of intervals. In the weighted case (WJISP), the goal is to maximize the
weight of a feasible set.

Although the interval selection problem is solvable (very e�ciently), the
JISP is NP hard. It is known that it cannot have a PTAS but the best
approximation ratio remains an open problem.

28 / 51

The greedy algorithm for JISP

We can obtain a 2-approximation for JISP by the same optimal greedy
algorithm that we used for the unweighted interval selection problem.
Namely, the greedy algorithm sorts intervals so that f

1

 f
2

. . . fn and
then accepts greedily.

We can prove the stated approximation by a charging argument that
charges intervals in an optimal solution OPT to intervals in the greedy
solution so that at most two intervals in OPT are charged to any interval
in the greedy solution.

The graph theoretic abstraction of interval selection is the class of chordal
graphs. One characterization is that a graph G = (V ,E) is a chordal
graph is there is an ordering of the vertices v

1

, v
2

, . . . vn such that for all i ,
Nbhd(vi) \ {vi+1

, . . . , vn} is a clique. Equivalently, there is at most one
independent vertex in Nbhd(vi) \ {vi+1

, . . . , vn}.

Such a vertex ordering is called a perfect elimination ordering (PEO).

29 / 51

Interval graphs are chordal graphs

It can be observed that interval graphs ,intersection graphs of intervals
[sj , fj), are chordal graphs where the ordering is given by f

1

 f
2

. . . fn.

Thinking back to our discusion of the greedy algorithm for interval
selection (i.e., the max independent set problem for interval graphs), we
see that the algorithm used the PEO given by non-decreasing finish times
{fj}.

Similarly, we solved interval colouring (i.e., the colouring problem for
interval graphs) used the reverse of the PEO. That is, schedule by sorting
intervals so that s

1

 s
2

. . . sn and then coloured greedily. Equivalently, we
can sort so that f

1

� f
2

. . . � fn (i.e., the reverse of the PEO) and colour
greedily.

30 / 51

Extending chordal graphs

In order to model the JISP problem in graph theoretic terms, we generalize
the idea of a PEO. We csan say that a graph G = (V ,E) is an inductive
k-independence graph if the vertices can be ordered v

1

, v
2

, . . . , vn so that
there are at most k independent vertices in Nbhd(vi) \ {vi+1

, . . . , vn}.

We can call such an ordering a k-PEO.

Just as interval graphs are chordal, the intersection graphs induced by the
JISP problem are inductive 2-indepedence graphs where the same ordering
f
1

 f
2

. . . fn provides the appropriate 2-PEO.

Note: k + 1 claw free graphs are a special case of inductive
k-independence graphs. That is, any ordering of the vertices is a k-PEO.

For example, the intersection graph of translates of a unit radius disk in
2-space is both a a 6-claw free graph and an inductive 4 independence
graph (ordering by non-increasing radius).
How would you approximate the (unweighted) maximumum independent
set and colouring problems for inductive k independence graphs? 31 / 51

An FPTAS for the knapsack problem

We recall our discussion of the knapsack problem from Week 3.

The Knapsack problem

In the knapsack problem we are given a set of n items I
1

, . . . , In and a
size bound B where where each item Ij = (sj , vj) with sj being the
size of the item and vj the value.

A feasible set is now a subset of items S such that the sum of the
sizes of items in S is at most the bound B .

Goal: Find a feasible set S that maximizes the sum of the values of
items in S .

In general we can allow real valued parameters but in some algorithms
need to restrict attention to integral parameters. But by scaling
inputs this is not a significant restriction.
This is known to be an NP hard problem but as we now recall from
Week 3, it is only “weakly NP hard” and there is an FPTAS for this
problem.

32 / 51

A DP algorithm for the knapsack problem leading to
an FPTAS

In the first algorithm, if the sizes (or the bound B) are small (i.e.
B = poly(n)) then the algorithm runs in polynomial time.

What if the values {vi} are integral and small?

Consider the following semantic array

W [i , v] =

8
><

>:

minimum size required to obtain at least profit v using

a subset of the items {I
1

, . . . , Ii} if possible

1 otherwise

The desired optimum value is max{v : W [n, v] is at most B}.

33 / 51

An FPTAS for the knapsack problem

This algorithm can be used as the basis for an e�cient approximation
algorithm for all input instances.

The basic idea is relatively simple:
I The high order bits/digits of the values can determine an approximate

solution (disregarding low order bits after rounding up).
I The fewer high order bits we use, the faster the algorithm but the

worse the approximation.
I The goal is to scale the values in terms of a parameter ✏ so that a

(1 + ✏) approximation is obtained with time complexity polynomial in n
and (1/✏).

I The details are given in the DPV text (section 9.2.4) or the KT text
(section 11.8).

I Namely, KT sets v̂i = d vi n
✏vmax

e where v
max

= maxj{vj}. DPV use the
floor b c.

I The running time is O(n3/✏).

34 / 51

Local Search: another conceptually simple approach

We now begin a discussion of local search which for me, along with greedy
algorithms, is one of the two conceptually simplest search/optimization
paradigms. (We briefly mentioned local search when discussing flows.)

The vanilla local search paradigm

“Initialize” S
While there is a “better” solution S 0 in the “local neighbourhood”
Nbhd(S)
S := S 0

End While

If and when the algorithm terminates, the algorithm has computed a local
optimum. To make this a precise algorithmic model, we have to say:

1 How are we allowed to choose an initial solution?
2 What constitutes a reasonable definition of a local neighbourhood?
3 What do we mean by “better”?

Answering these questions (especially as to defining a local
neighbourhood) will often be quite problem specific.

35 / 51

Towards a precise definition for local search

We clearly want the initial solution to be e�ciently computed and to
be precise we can (for example) say that the initial solution is a
random solution, or a greedy solution or adversarially chosen.
Of course, in practice we can use any e�ciently computed solution.
We want the local neighbourhood Nbhd(S) to be such that we can
e�ciently search for a “better” solution (if one exists).

1 In many problems, a solution S is a subset of the input items or
equivalently a {0,1} vector, and in this case we often define the
Nbhd(S) = {S 0|dH(S , S 0) k} for some “small” k where dH(S , S 0) is
the Hamming distance.

2 More generally whenever a solution is a vector over a small domain D,
we can use Hamming distance to define a local neighbourhood.
Hamming distance k implies that Nbhd(S) can be searched
in at most time |D|k .

3 As we previously discussed, we can view Ford Fulkerson flow algorithms
as local search algorithms where the (possibly exponential size but
e�ciently search-able) neighbourhood of a flow solution S are flows
obtained by adding an augmenting path flow.

36 / 51

What does “better” solution mean? Oblivious and
non-oblivious local search

For a search problem, we would generally have a non-feasible initial
solution and “better” can then mean “closer” to being feasible.
For an optimization problem it usually means being an improved
solution which respect to the given objective. For reasons I cannot
understand, this has been termed oblivious local search. I think it
should be called greedy local search.
For some applications, it turns out that rather than searching to
improve the given objective function, we search for a solution in the
local neighbourhood that improves a related potential function and
this has been termed non-oblivious local search.
In searching for an improved solution, we may want an arbitrary
improved solution, a random improved solution, or the best improved
solution in the local neighbourhood.
For e�ciency we sometimes insist that there is a “su�ciently better”
improvement rather than just better.

37 / 51

The weighted max cut problem

Our first local search algorithm will be for the (weighted) max cut
problem defined as follows:

The (weighted) max-cut problem

I Given a (undirected) graph G = (V ,E) and in the weighted case the edges
have non negative weights.

I Goal: Find a partition (A,B) of V so as to maximize the size (or weight) of
the cut E 0 = {(u, v)|u 2 A, v 2 B , (u, v) 2 E}.

We can think of the partition as a characteristic vector � in {0, 1}n
where n = |V |. Namely, say �i = 1 i↵ vi 2 A.

Let Nd(A,B) = {(A0,B 0) | the characteristic vector of (A0) is
Hamming distance at most d from (A)}

So what is a natural local search algorithm for (weighted) max cut?

38 / 51

A natural oblivious local search for weighted max cut

Single move local search for weighted max cut

Initialize (A,B) arbitrarily
WHILE there is a better partition (A0,B 0) 2 N

1

(A,B)
(A,B) := (A0,B 0)

END WHILE

This single move local search algorithm is a 1

2

approximation; that is,
when the algorithm terminates, the value of the computed local
optimum will be at least half of the (global) optimum value.
In fact, if W is the sum of all edge weights, then w(A,B) � 1

2

W .
This kind of ratio is sometimes called the absolute ratio or totality
ratio and the approximation ratio must be at least this good.
The worst case (over all instances and all local optima) of a local
optimum to a global optimum is called the locality gap.
It may be possible to obtain a better approximation ratio than the
locality gap (e.g. by a judicious choice of the initial solution) but the
approximation ratio is at least as good as the locality gap.

39 / 51

Proof of totality gap for the max cut single move
local search

The proof is based on the following property of any local optimum:
X

v2A
w(u, v)

X

v2B
w(u, v) for every u 2 A

Summing over all u 2 A, we have:

2
X

u,v2A
w(u, v)

X

u2A,v2B
w(u, v) = w(A,B)

Repeating the argument for B we have:

2
X

u,v2B
w(u, v)

X

u2A,v2B
w(u, v) = w(A,B)

Adding these two inequalities and dividing by 2, we get:
X

u,v2A
w(u, v) +

X

u,v2B
w(u, v) w(A,B)

Adding w(A,B) to both sides we get the desired W 2w(A,B).
40 / 51

The complexity of the single move local search

Claim: The local search algorithm terminates on every input instance.
I Why?

Although it terminates, the algorithm could run for exponentially
many steps.

It seems to be an open problem if one can find a local optimum
in polynomial time.

However, we can achieve a ratio as close to the state 1

2

totality ratio
by only continuing when we find a solution (A0,B 0) in the local
neighborhood which is “su�ciently better”. Namely, we want

w(A0,B 0) � (1 + ✏)w(A,B) for any ✏ > 0

This results in a totality ratio 1

2(1+✏) with the number of iterations

bounded by n
✏ logW .

41 / 51

The complexity of the single move local search

Claim: The local search algorithm terminates on every input instance.
I Why?

Although it terminates, the algorithm could run for exponentially
many steps.

It seems to be an open problem if one can find a local optimum
in polynomial time.

However, we can achieve a ratio as close to the state 1

2

totality ratio
by only continuing when we find a solution (A0,B 0) in the local
neighborhood which is “su�ciently better”. Namely, we want

w(A0,B 0) � (1 + ✏)w(A,B) for any ✏ > 0

This results in a totality ratio 1

2(1+✏) with the number of iterations

bounded by n
✏ logW .

41 / 51

Final comment on this local search algorithm

It is not hard to find an instance where the single move local
search approximation ratio is 1

2

.

Furthermore, for any constant d , using the local Hamming
neighbourhood Nd(A,B)
still results in an approximation ratio that is essentially 1

2

.
And this remains the case even for d = o(n).

It is an open problem as to what is the best “combinatorial algorithm”
that one can achieve for max cut.

There is a vector program relaxation of a quadratic program that
leads to a .878 approximation ratio.

42 / 51

Exact Max-k-Sat

Given: An exact k-CNF formula

F = C
1

^ C
2

^ . . . ^ Cm,

where Ci = (`1i _ `2i . . . _ `ki) and `ji 2 {xk , x̄k | 1 k n} .
In the weighted version, each Ci has a weight wi .

Goal: Find a truth assignment ⌧ so as to maximize

W (⌧) = w(F | ⌧),
the weighted sum of satisfied clauses w.r.t the truth assignment ⌧ .

It is NP hard to achieve an approximation better than 7

8

for (exact)
Max-3-Sat and hence for the non exact versions of Max-k-Sat for
k � 3.

43 / 51

The natural oblivious local search

A natural oblivious local search algorithm uses a Hamming distance d
neighbourhood:
Nd(⌧) = {⌧ 0 : ⌧ and ⌧ 0 di↵er on at most d variables }

Oblivious local search for Exact Max-k-Sat

Choose any initial truth assignment ⌧
WHILE there exists ⌧̂ 2 Nd(⌧) such that W (⌧̂)> W (⌧)

⌧ := ⌧̂
END WHILE

44 / 51

How good is this algorithm?

Note: Following the standard convention for Max-Sat, I am using
approximation ratios < 1.

It can be shown that for d = 1, the approximation ratio for
Exact-Max-2-Sat is 2

3

.

In fact, for every exact 2-Sat formula, the algorithm finds an
assignment ⌧ such that W (⌧) � 2

3

Pm
i=1

wi , the weight of all clauses,
and we say that the “totality ratio” is at least 2

3

.

(More generally for Exact Max-k-Sat the ratio is k
k+1

). This ratio is
essentially a tight ratio for any d = o(n).

This is in contrast to a naive greedy algorithm derived from a
randomized algorithm that achieves totality ratio (2k � 1)/2k .

“In practice”, the local search algorithm often performs better than
the naive greedy and one could always start with (for example) a
greedy algorithm and then apply local search.

45 / 51

Analysis of the oblivious local search for Exact
Max-2-Sat

Let ⌧ be a local optimum and let
I S

0

be those clauses that are not satisfied by ⌧
I S

1

be those clauses that are satisfied by exactly one literal by ⌧
I S

2

be those clauses that are satisfied by two literals by ⌧

Let W (Si) be the corresponding weight.

We will say that a clause involves a variable xj if either
xjor x̄j occurs in the clause. Then for each j , let

I Aj be those clauses in S
0

involving the variable xj .
I Bj be those clauses C in S

1

involving the variable xj
such that it is the literal xj or x̄j that is satisfied in C
by ⌧ .

I Cj be those clauses in S
2

involving the variable xj .

Let W (Aj),W (Bj),W (Cj) be the corresponding weights.

46 / 51

Analysis of the oblivious local search (continued)

Summing over all variables xj , we get

I 2W (S
0

) =
P

j W (Aj) noting that each clause in S
0

gets counted twice.
I W (S

1

) =
P

j W (Bj)

Given that ⌧ is a local optimum, for every j , we have

W (Aj) W (Bj)

or else flipping the truth value of xj would
improve the weight of the clauses being satisfied.

Hence (by summing over all j),

2W
0

 W
1

.

47 / 51

Finishing the analysis

It follows then that the ratio of clause weights not satisfied to the
sum of all clause weights is

W (S
0

)

W (S
0

) +W (S
1

) +W (S
2

)
 W (S

0

)

3W (S
0

) +W (S
2

)
 W (S

0

)

3W (S
0

)

It is not easy to verify but there are examples showing that this 2

3

bound is essentially tight for any Nd neighbourhood for d = o(n).

It is also claimed that the bound is at best 4

5

whenever d < n/2. For
d = n/2, the algorithm would be optimal.

In the weighted case, as in the max-cut problem, we have to worry
about the number of iterations. And here again we can speed up the
termination by insisting that any improvement has to be su�ciently
better.

48 / 51

Using the proof to improve the algorithm

We can learn something from this proof to improve the performance.

Note that we are not using anything about W (S
2

).

If we could guarantee that W (S
0

) was at most W (S
2

) then the ratio
of clause weights not satisfied to all clause weights would be 1

4

.

Claim: We can do this by enlarging the neighbourhood to include
⌧ 0 = the complement of ⌧ .

49 / 51

The non-oblivious local search

We consider the idea that satisfied clauses in S
2

are more valuable
than satisfied clauses in S

1

(because they are able to withstand any
single variable change).

The idea then is to weight S
2

clauses more heavily.

Specifically, in each iteration we attempt to find a ⌧ 0 2 N
1

(⌧) that
improves the potential function

3

2
W (S

1

) + 2W (S
2

)

instead of the oblivious W (S
1

) +W (S
2

).

More generally, for all k , there is a setting of scaling coe�cients
c
1

, . . . , ck , such that the non-oblivious local search using the
potential function c

1

W (S
1

) + c
2

W (S
2

+ . . .+ ckW (Sk) results

in approximation ratio 2

k�1

2

k for exact Max-k-Sat.
50 / 51

Sketch of 3
4 totality bound for the non oblivious local

search for Exact Max-2-Sat

Let Pi ,j be the weight of all clauses in Si containing xj .

Let Ni ,j be the weight of all clauses in Si containing x̄j .

Here is the key observation for a local optimum ⌧ wrt the stated
potential:

�1

2
P
2,j �

3

2
P
1,j +

1

2
N
1,j +

3

2
N
0,j 0

Summing over variables P
1

= N
1

= W (S
1

), P
2

= 2W (S
2

) and
N
0

= 2W (S
0

) and using the above inequality we obtain

3W (S
0

) W (S
1

) +W (S
2

)

51 / 51

	Week 9

