
CSC373: Algorithm Design,
Analysis and Complexity
Fall 2017
DENIS PANKRATOV

NOVEMBER 1, 2017

Linear Function
𝑓:ℝ𝑛 → ℝ is linear if it can be written as 𝑓 𝑥 = 𝑎𝑇𝑥 for some 𝑎 ∈ ℝ𝑛

Example: 𝑓 𝑥1, 𝑥2 = 3𝑥1 − 5𝑥2 = 3
−5

𝑇 𝑥1
𝑥2

Linear equation: 𝑓(𝑥) = 𝑐 where 𝑓 is linear and 𝑐 ∈ ℝ

Example: 3𝑥1 − 5𝑥2 = 4

Geometrically: a line

Example: 𝑥2 =
3
5 𝑥1 −

4
5

Linear Function
𝑎𝑇𝑥 = 𝑐 is geometrically a line in 2D, a plane in 3D, and a hyperplane in nD

𝑎 is a normal vector, i.e., the hyperplane is perpendicular to 𝑎

𝑎

Linear Inequality
𝑓(𝑥) ≥ 𝑐 where 𝑓 is linear and 𝑐 ∈ ℝ or 𝑓(𝑥) ≤ 𝑐

Example: 3𝑥1 − 5𝑥2 ≥ 4

Geometrically: half-space

𝑎

Linear Programming (LP)

Linear objective!

Linear constraints:
inequalities/equalities

Could be min

Linear Programming, Geometrically

Feasible region – polytope, aka
intersection of half-spaces!

Any point here is a
feasible solution

Linear Programming, Geometrically

Linear Programming, Geometrically

Constraints

Feasible region

Example in 3 dimensions

Linear Programming, Geometrically
How to visualize feasible regions in more than 3 dimensions?

Trick for 𝑛 dimensional spaces for any 𝑛 ≥ 4

Step 1: imagine something in 3 dimensions

Step 2: in your mind, say 𝑛 as loudly as possible

LP, General Formulation
Input: 𝑐, 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚

Goal:

Maximize 𝑐𝑇𝑥

Subject to 𝑎1𝑇𝑥 ≤ 𝑏1
𝑎2𝑇𝑥 ≤ 𝑏2

⋮

𝑎𝑚𝑇 𝑥 ≤ 𝑏𝑚
𝑥 ≥ 0

𝑛 variables

𝑚 constraints

𝑛 more constraints

In general, we allow equality
constraints, and inequalities
in the other direction, and
minimization objective. We

will later see how to
incorporate such changes

LP, Standard Matrix Form
Input: 𝑐 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛

Goal:

Maximize 𝑐𝑇𝑥

Subject to 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

𝐴 =
𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛
, row 𝑖 is 𝑎𝑖

𝑛 variables

𝑚 constraints

𝑛 more constraints

Does LP Always Have an Optimal
Solution?
NO! LP could fail to have a solution for two reasons:

(1) Linear program is infeasible, i.e., feasibility region is empty:

𝑥 𝐴𝑥 ≤ 𝑏} = ∅

Example: constraints include 𝑥1 ≤ 1 and 𝑥1 ≥ 2.

(2) Linear program is unbounded, i.e., not constrained enough.

Example: maximize 𝑥1 + 𝑥2 subject to 𝑥1, 𝑥2 ≥ 0.

When LP has an optimal solution, it also has one at a vertex of the feasible polytope!

You Have Seen LPs Before
Maximum flow

Input: directed graph 𝐺 = 𝑉, 𝐸 , 𝑐: 𝐸 → ℝ≥0 edge capacities, 𝑠 – start vertex, 𝑡 – terminal

Output: valid flow 𝑓 of maximum value

For each edge (𝑢, 𝑣) introduce a variable 𝑓𝑢𝑣
Flow value is σ(𝑠,𝑣)∈𝐸 𝑓𝑠𝑣
Flow is valid if it satisfies:
▪ Capacity constraints: for every edge (𝑢, 𝑣) we have 0 ≤ 𝑓𝑢𝑣 ≤ 𝑐 𝑢, 𝑣
▪ Flow conservation constraints: for every vertex 𝑣 we have σ(𝑢,𝑣)∈𝐸 𝑓𝑢𝑣 = σ(𝑣,𝑤)∈𝐸 𝑓𝑣,𝑤

Max Flow as LP
Flow value is σ(𝑠,𝑣)∈𝐸 𝑓𝑠𝑣
Flow is valid if it satisfies:
▪ Capacity constraints: for every edge (𝑢, 𝑣) we have 0 ≤ 𝑓𝑢𝑣 ≤ 𝑐 𝑢, 𝑣
▪ Flow conservation constraints: for every vertex 𝑣 we have σ(𝑢,𝑣)∈𝐸 𝑓𝑢𝑣 = σ(𝑣,𝑤)∈𝐸 𝑓𝑣,𝑤

Linear objective!
Linear constraints:

inequalities/equalities

(𝑠,𝑣)∈𝐸

𝑓𝑠𝑣

0 ≤ 𝑓𝑢𝑣 ≤ 𝑐 𝑢, 𝑣

(𝑢,𝑣)∈𝐸

𝑓𝑢𝑣 =
(𝑣,𝑤)∈𝐸

𝑓𝑣,𝑤

for all (𝑢, 𝑣) ∈ 𝐸

for all 𝑣 ∈ 𝑉 − {𝑠, 𝑡}

maximize

Single-source Shortest Path as LP
Input: directed graph 𝐺 = 𝑉, 𝐸 , 𝑤: 𝐸 → ℝ≥0, 𝑠 – start vertex, 𝑡 – terminal vertex

Output: weight of a shortest-weight path from 𝑠 to 𝑡

Variables: for each vertex 𝑣 we have variable 𝑑𝑣

Why max?

If objective was min., then we
could set all variables 𝑑𝑣 to 0.

Exercise: prove formally
that this works!

Yet Another LP Problem
For max flow and single-source shortest path specialized algorithms outperform LP-based
algorithms

LP would not be so useful if we could always create specialized algorithms for all problems

It seems we can’t always do that, e.g.

Multicommodity-flow problem

Input: directed graph G=(V,E) 𝑐: 𝐸 → ℝ≥0 edge capacities

𝑘 commodities 𝐾1, 𝐾2,… , 𝐾𝑘, where 𝐾𝑖 = (𝑠𝑖, 𝑡𝑖, 𝑑𝑖) and 𝑠𝑖 is the start vertex of

commodity 𝑖, 𝑡𝑖 is the terminal vertex, 𝑑𝑖 is the demand.

Output: valid multicommodity flow 𝑓1, 𝑓2, … , 𝑓𝑘 , where 𝑓𝑖 has value 𝑑𝑖 and all the 𝑓𝑖 jointly
satisfy the constraints

Multicommodity-flow Problem
Input: directed graph G=(V,E) 𝑐: 𝐸 → ℝ≥0 edge capacities

𝑘 commodities 𝐾1, 𝐾2,… , 𝐾𝑘, where 𝐾𝑖 = (𝑠𝑖, 𝑡𝑖, 𝑑𝑖) and 𝑠𝑖 is the start vertex of

commodity 𝑖, 𝑡𝑖 is the terminal vertex, 𝑑𝑖 is the demand.

Output: valid multicommodity flow 𝑓1, 𝑓2, … , 𝑓𝑘 , where 𝑓𝑖 has value 𝑑𝑖 and all the 𝑓𝑖 jointly
satisfy the constraints

The only known polynomial
time algorithm for this

problem is based on solving
this LP! No specialized

algorithms known.

Linear Programming is Everywhere
Used heavily in

◦ Microeconomics
◦ Manufacturing
◦ VLSI (very large scale integration) design
◦ Logistics/transportation
◦ Portfolio optimization
◦ Bioengineering (flux balance analysis)
◦ Company management more broadly: often want to maximize profits or minimize costs, use linear

models for simplicity
◦ Operations research
◦ Design of approximation algorithms
◦ Proving theorems, as a proof technique
◦ …

Complexity of LP

Input: 𝑐 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛

Maximize 𝑐𝑇𝑥

Subject to 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Is the above easy to solve in polynomial time? Is it NP-hard? Is it easy in practice?

Complexity of LP
Fascinating and counter-intuitive story

1947 – Dantzig invents simplex algorithm. Simplex runs incredibly fast in practice (linear or near-
linear time)

1973 – Klee and Minty give an example on which simplex runs in exponential time

1979 – Khachian invents ellipsoid method – the first polynomial time algorithm for LP. It does
not give an exact solution, but for any 𝜖 > 0 it gives an 𝜖-approximation in poly time. Khachian’s
algorithm is not very fast in practice.

1984 – Karmarkar invents interior point methods – new poly time algorithm for LP. Various
versions of interior point methods are sometimes used in practice.

2004 – Spielman and Teng introduce “smoothed analysis” to explain great empirical
performance of simplex

Complexity of LP
Example when worst-case analysis fails miserably

Led to development of new great algorithms and ideas

Bottom line: linear programming is easy in theory and practice!

LP Solutions
Input: 𝑐 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛

Goal:

Maximize 𝑐𝑇𝑥

Subject to 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Note: optimal solution 𝑥 might still be rational, even if 𝑐, 𝑏, 𝐴 are integral

LP Fractional Solutions Example

Optimal solution: 𝑧 = 1
7 , 𝑥1 =

3
7 , 𝑥2 =

4
7

Integer Programming, IP
If we restrict solution to be integral, then we obtain an instance of an Integer Program

Input: 𝑐 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛

Goal:

Maximize 𝑐𝑇𝑥

Subject to 𝐴𝑥 ≤ 𝑏

𝒙 ∈ ℤ𝒏

Does this make the problem harder or easier?

Integer Programming
The problem is intuitively harder than LP: feasible region for LP is a nice single continuous
object, while feasible region for IP is a potentially huge collection of discrete points. Discrete
objects tend to be harder to handle than continuous ones.

How hard is it?

NP-hard!

Consider 0/1 feasibility problem (special case of IP feasibility problem)

Input: 𝑏 ∈ ℤ𝑚, 𝐴 ∈ ℤ𝑚×𝑛

Question: does there exist 𝑥 ∈ {0,1}𝑛 such that 𝐴𝑥 ≤ 𝑏?

0/1 feasibility is hard IMPLIES IP feasibility is hard IMPLIES IP is hard

0/1 Feasibility Problem is NP-complete
Input: 𝑏 ∈ ℤ𝑚, 𝐴 ∈ ℤ𝑚×𝑛

Question: does there exist 𝑥 ∈ {0,1}𝑛 such that 𝐴𝑥 ≤ 𝑏?

Step 1: IP feasibility is in NP. Given a solution 𝑥 simply multiply it by 𝐴 and compare with 𝑏.
Matrix multiplication is in P, so it gives a polynomial time verifier.

Step 2: we will show how to reduce 3SAT to IP Feasibility Problem in polynomial time.

Step 2: 3SAT ≤𝑝 0/1 Feasibility Problem
Given 3CNF formula 𝜑, need to construct 𝑏, 𝐴 such that

◦ Construction runs in polynomial time
◦ 𝜑 is satisfiable if and only if there exist 𝑥 ∈ {0,1}𝑛 such that 𝐴𝑥 ≤ 𝑏

Suppose 𝜑 is defined on 𝑛 variables 𝑥1, … , 𝑥𝑛. It has the form

𝐶1 ∨ 𝐶2 ∨ ⋯∨ 𝐶𝑚,

where 𝐶𝑖 is a clause consisting of 3 literals.

Step 2: 3SAT ≤𝑝 0/1 Feasibility Problem
Suppose 𝜑 is defined on 𝑛 variables 𝑥1, … , 𝑥𝑛. It has the form

𝐶1 ∨ 𝐶2 ∨ ⋯∨ 𝐶𝑚,

where 𝐶𝑖 is a clause consisting of 3 literals.

Convert each clause into an inequality as follows:
◦ Positive literal 𝑥𝑖 turns into 𝑥𝑖
◦ Negative literal ¬𝑥𝑖 turns into (1 − 𝑥𝑖)
◦ Connective ∨ turns into +
◦ The inequality is ≥ 1

Example: 𝐶1 = 𝑥1 ∨ ¬𝑥17 ∨ 𝑥32 turns into 𝑥1 + 1 − 𝑥17 + 𝑥32 ≥ 1

Step 2: 3SAT ≤𝑝 0/1 Feasibility Problem
Example: 𝐶 = 𝑥1 ∨ ¬𝑥17 ∨ 𝑥32 turns into 𝑥1 + 1 − 𝑥17 + 𝑥32 ≥ 1

Perform this conversion for each clause. You end up with a system of 𝑚 inequalities over 𝑛
variables. Can be expressed as 𝐴𝑥 ≤ 𝑏.

(1) conversion clearly takes polynomial time

(2) 𝜑 is satisfiable if and only if there exist 𝑥 ∈ {0,1}𝑛 such that 𝐴𝑥 ≤ 𝑏, because

1 corresponds to T, 0 corresponds to F

each inequality is satisfied if and only if the corresponding clause is satisfied

Conclusion

IP Feasibility Problem
is NP-hard

Integer Programming
is NP-hard

BUT

Linear Programming
is easy (in P)

Adding the restriction that solution is integral tremendously increases the complexity

0/1 Feasibility
Problem is NP-

complete

Side notes
IP feasibility (when variables can be any integers, not necessarily 0/1) is, in fact, NP-complete.
We have shown it is NP-hard, so to show it is NP-complete, we need to show it is in NP. This is
nontrivial, but follows from the known linear algebraic techniques (essentially, Cramer’s rule).

IP feasibility reduces to 0/1 feasibility in polytime (exercise!)

Integer programming is self-reducible: if decision problem is in P then the search problem is also
in P. (exercise! hint: easily follows from the previous point)

Back to Linear Programming
2 popular forms of LP

Standard form:

Maximize 𝑐𝑇𝑥
Subject to 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Slack form:

z = 𝑐𝑇𝑥
𝑠 = 𝑏 − 𝐴𝑥

𝑠, 𝑥 ≥ 0
Introduce new vars 𝑠

What if Your LP is not in Standard Form?
Could happen for several reasons:

(1) your problem is minimization instead of maximization

(2) your constraints contain equalities

(3) your constraints contain inequalities ≥ instead of ≤

(4) your variable 𝑥𝑖 does not have a corresponding constraint 𝑥𝑖 ≥ 0

Standard form:
Maximize 𝑐𝑇𝑥

Subject to 𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

Transformations that “Preserve
Solutions”
Transform your LP formulation L into another LP formulation L’ such that a solution to L’ can be
efficiently turned into a solution to L

(1) To turn minimization problem into maximization, multiply objective by -1

(2) Replace each equality constraint 𝑎𝑇𝑥 = 𝑏 by two inequalities: 𝑎𝑇𝑥 ≤ 𝑏 and 𝑎𝑇𝑥 ≥ 𝑏

(3) Multiply an inequality of the form 𝑎𝑇𝑥 ≥ 𝑏 by -1 to obtain −𝑎𝑇𝑥 ≤ −𝑏

(4) For each unconstrained variable 𝑥𝑖 introduce two new variables 𝑥𝑖+ and 𝑥𝑖−

Replace each occurrence of 𝑥𝑖 with 𝑥𝑖+ − 𝑥𝑖−

Introduce two inequalities 𝑥𝑖+ ≥ 0 and 𝑥𝑖− ≥ 0

LP Transformations: Example

LP Transformations: Example Cont’d

Standard Form!

How to Make Sure LP Solution is Optimal

Suppose I say that 𝑥1, 𝑥2 = (100,300) is optimal with objective value 1900

How can you check this?

How to Make Sure LP Solution is Optimal

Suppose I say that 𝑥1, 𝑥2 = (100,300) is optimal with objective value 1900

Take the first constraint and add to it 6 times the second constraint to get

𝑥1 + 6𝑥2 ≤ 2000

This shows that ANY SOLUTION AT ALL can achieve value at most 2000

How to Make Sure LP Solution is Optimal

Suppose I say that 𝑥1, 𝑥2 = (100,300) is optimal with objective value 1900

Can we add some other combination of constraints to get this bound even closer to 1900?
Try 5 times the second constraint plus the third constraint to get

5𝑥2 + (𝑥1 + 𝑥2) = 𝑥1 + 6𝑥2 ≤ 5 × 300 + 400 = 1900

This shows that ANY SOLUTION AT ALL can achieve value at most 1900
Therefore, the above solution that achieves 1900 is optimal!

Is There an Algorithm to Verify if Solution
is Optimal?
Introduce variables 𝑦1, 𝑦2, 𝑦3 to denote multipliers of the constraints

What do we want from these multipliers?

(1) 𝑦𝑖 ≥ 0 otherwise if the multiplier is negative multiplying by it flips the inequality

After multiplication and addition we get the inequality:

(2) want the LHS to look like the objective 𝑥1 + 6𝑥2, but in fact it is also enough to bound the
objective, i.e., we want 𝑥1 + 6𝑥2 ≤ (𝑦1 + 𝑦3)𝑥1 + (𝑦2 + 𝑦3)𝑥2

Is There an Algorithm to Verify if Solution
is Optimal?

What do we want from these multipliers?

(1) 𝑦𝑖 ≥ 0

(2)

(3) minimize the bound 200𝑦1 + 300𝑦2 + 400𝑦3

Is There an Algorithm to Verify if Solution
is Optimal?

What do we want from these multipliers?

That’s another LP – called the DUAL! Original LP is called the PRIMAL.

Is There an Algorithm to Verify if Solution
is Optimal?

The problem of certifying optimality of an LP is LP itself

If the dual LP has solution 𝑦1, 𝑦2, 𝑦3 that gives the same value as the solution 𝑥1, 𝑥2, 𝑥3 to the
primal, then you know that your primal solution was in fact OPTIMAL

PRIMAL DUAL

Another View of Optimality Certificate
Suppose you find a new super fast LP solver and build a company around this knowledge

You provide a service to customers by solving their huge LPs that they can’t solve themselves

You want your algorithm to remain a secret, but the customers demand to know that your LP
solver is producing optimal solutions

How do they check your solutions? What do you need to do in order to convince customers?

Formulate the dual, solve it – it is an LP after all and you have a super fast LP solver

Send your customers the dual solution alongside with the primal solution

Customers can check if using the multipliers for the dual solutions gives the same bound as the
primal solution (it requires just adding together linear inequalities, which can be done even by a
resource-bounded customers). Moreover, you haven’t revealed anything about the algorithm!

Does this always work?

Does the Dual Optimum Always Coincide
with the Primal Optimum?
General version of the dual. Note: use standard form!

Let me stress it again: to write down dual LP, first write down primal LP in standard form, then
use the above formula. Otherwise it will get confusing!

Weak Duality Theorem: If 𝑥 is a feasible solution to the primal and 𝑦 is a feasible solution to the
dual, then the value of solution 𝑥 ≤ the value of solution 𝑦.

Weak Duality

Weak Duality Theorem: If 𝑥 is a feasible solution to the primal and 𝑦 is a feasible solution to the
dual, then the value of solution 𝑥 ≤ the value of solution 𝑦.

Proof: the value of solution x is 𝑐𝑇𝑥 and the value of solution y is 𝑦𝑇𝑏. We have

𝑐𝑇𝑥 ≤ 𝑦𝑇𝐴 𝑥 = 𝑦𝑇 𝐴𝑥 ≤ 𝑦𝑇𝑏,
the first inequality is from the definition of the dual, the second inequality is from the definition
of the primal.

Does the Dual Optimum Always Coincide
with the Primal Optimum?
Weak duality shows that the primal optimum is always bounded by the dual optimum

Strong duality shows that the optimums actually coincide!

Strong duality theorem: if the primal LP has a bounded optimum, then so does the dual LP, and
the two optimal values coincide.

One of the most important theorems in the theory of linear programming!

Strong Duality
Strong duality theorem: if the primal LP has a bounded optimum, then so does the dual LP, and
the two optimal values coincide.

To prove the theorem, we will use the following technical tool: Farkas lemma

Farkas lemma (one of many-many versions): Exactly one of the following holds:

(1) exists 𝑥 such that 𝐴𝑥 ≤ 𝑏

(2) exists y such that 𝑦𝑇𝐴 = 0, 𝑦 ≥ 0, 𝑦𝑇𝑏 < 0

Farkas Lemma – Geometric Intuition
Farkas lemma (one of many-many versions): Exactly one of the following holds:

(1) exists 𝑥 such that 𝐴𝑥 ≤ 𝑏

(2) exists y such that 𝑦𝑇𝐴 = 0, 𝑦 ≥ 0, 𝑦𝑇𝑏 < 0

Points “below” 𝑏

𝑏

Image of 𝐴, aka
linear subspace

(1) Image of 𝐴 contains a point “below” 𝑏

OR

(2) The region “below” point 𝑏 doesn’t intersect image of A
this is witnessed by a normal vector to the image of A

Points
“below” 𝑏

𝑏

Image of 𝐴, aka
linear subspace

𝑦

Strong Duality Proof

Strong duality theorem (special case): Assume both primal and dual have finite optimal values.
The two optimal values coincide.

Proof: Let 𝑥∗ be an optimal primal solution, let 𝑧∗ = 𝑐𝑇𝑥∗ be the optimal value. By weak duality
there is no 𝑦 such that 𝑦𝑇𝐴 ≥ 𝑐𝑇 and 𝑦𝑇𝑏 ≤ 𝑧∗, i.e., there is no y such that

−𝐴𝑇
𝑏𝑇

𝑦 ≤ 𝑐
𝑧∗

Strong Duality Proof
There is no y such that −𝐴

𝑇

𝑏𝑇
𝑦 ≤ 𝑐

𝑧∗

By Farkas lemma, there is 𝑥 and 𝜆 such that

𝑥𝑇 𝜆 −𝐴𝑇
𝑏𝑇

= 0, 𝑥 ≥ 0, 𝜆 ≥ 0, −𝑥𝑇𝑐 + 𝜆𝑧∗ < 0

Case 1: 𝜆 > 0, then rescale (𝑥, 𝜆) by 𝜆 to get (𝑥/𝜆, 1). By the above we get 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 and
𝑐𝑇𝑥 > 𝑧∗, which contradicts the optimality of 𝑧∗.

Case 2: 𝜆 = 0, then we get 𝐴𝑥 = 0 and 𝑐𝑇𝑥 > 0, so we can add 𝑥 to our optimal solution 𝑥∗
without contradicting inequalities and improving the value of the objective. Moreover, we can
do it infinitely many times, contradicting the fact that our primal has a finite optimal value.

Simplex
Has excellent empirical performance

Has terrible worst-case performance

Easy to specify geometrically

Simplex Geometric View

Simplex

Start at a
vertex of the

feasible
polytope

Examine
neighboring

vertices

Move to a
neighboring vertex

improving
objective value

Terminate
declaring optimal

value

Does there exist
a neighbor with
higher objective

value?

Simplex: How to Actually Implement it?
Recall two forms of LP:

All steps of Simplex can be conveniently performed in Slack form!

“A mathematical representation of surplus resources.” In real life problems, it’s unlikely that all
resources will be used completely, so there usually are unused resources.

Slack variables represent the unused resources between the LHS and RHS of each constraint.

Standard form:

Maximize 𝑐𝑇𝑥
Subject to 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Slack form:

z = 𝑐𝑇𝑥
𝑠 = 𝑏 − 𝐴𝑥

𝑠, 𝑥 ≥ 0

Slack Form
Nonbasic Variables

Basic Variables

Slack Form: Convenient Notation

Simplex: Starting at a Vertex

Observe that if 𝑏 ≥ 0 then 𝑥 = 0 (the all-0 vector) is feasible

Thus, if 𝑏 ≥ 0 we can start simplex at 𝑥 = 0

We will assume that 𝑏 ≥ 0 for now. We will talk about how to drop this assumption later

In slack form it means: set nonbasic variables to 0

Standard form:

Maximize 𝑐𝑇𝑥
Subject to 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Slack form:

z = 𝑐𝑇𝑥
𝑠 = 𝑏 − 𝐴𝑥

𝑠, 𝑥 ≥ 0

Simplex Example

To increase the value of 𝑧:
(1) Find a nonbasic variable with a positive coefficient, e.g., 𝑥1 (called entering variable)
(2) See how much you can increase this nonbasic variable without violating constraints

Simplex Example
Try to increase!

Obstacles!

𝑥1 ≤ 30
𝑥1 ≤ 24/2 = 12
𝑥1 ≤ 36/4 = 9

Otherwise
basic variable
becomes
negative

Tightest obstacle!

Simplex Example
𝑥1 ≤ 36/4 = 9

Tightest obstacle!

Solve tightest obstacle for the nonbasic variable

Substitute 𝑥1 in all other questions (called pivot)
This turns 𝑥1 into a basic variable and 𝑥6 into a non-basic variable

𝑥6 is called leaving variable

Simplex Example

Note: after this step basic feasible solution, i.e., substituting 0 for
nonbasic variables improves the value of 𝑧 from 0 to 27.

What next? Rinse and repeat!
(1) Find a nonbasic variable with a positive coefficient in the objective (entering variable)
(2) Find the tightest obstacle (leaving variable)
(3) Solve for the entering variable using the tightest obstacle and update the LP (pivot)

Simplex Example
Entering variable
Try to increase!

Leaving variable
Tightest obstacle!

Pivot!

Simplex Example
Entering variable
Try to increase!

Leaving variable
Tightest obstacle!

Pivot!

Simplex Example

No leaving variable! What next?
We are done!

Compare with Geometric View

Start at a
vertex of the

feasible
polytope

Examine
neighboring

vertices

Move to a
neighboring vertex

improving
objective value

Terminate
declaring optimal

value

Does there exist
a neighbor with
higher objective

value?

Compare with Geometric View

Examine
neighboring

vertices

Move to a
neighboring vertex

improving
objective value

Terminate
declaring optimal

value

Does there exist
a neighbor with
higher objective

value?

Assuming
𝑏 ≥ 0, start
with basic

feasible soln

Compare with Geometric View

Examine 𝑧

Move to a
neighboring vertex

improving
objective value

Terminate
declaring optimal

value

Does there exist
a neighbor with
higher objective

value?

Assuming
𝑏 ≥ 0, start
with basic

feasible soln

Compare with Geometric View

Examine 𝑧

Move to a
neighboring vertex

improving
objective value

Terminate
declaring optimal

value

Does there exist
a leaving

variable? (i.e. >0
coeff in 𝑧)

Assuming
𝑏 ≥ 0, start
with basic

feasible soln

Compare with Geometric View

Examine 𝑧

Find a leaving
variable and pivot

Terminate
declaring optimal

value

Does there exist
a leaving

variable? (i.e. >0
coeff in 𝑧)

Assuming
𝑏 ≥ 0, start
with basic

feasible soln

Compare with Geometric View

Examine 𝑧

Find a leaving
variable and pivot

Terminate
declaring optimal

value

Does there exist
a leaving

variable? (i.e. >0
coeff in 𝑧)

Assuming
𝑏 ≥ 0, start
with basic

feasible soln

Simplex Outstanding Issues
What if entering variable is unconstrained, i.e., has no corresponding leaving variable?

Means that you can increase 𝑧 as much as possible since entering variable has positive
coefficient, declare that the LP is unbounded.

It is possible that pivoting leaves the value of objective unchanged. This is known as degeneracy
– can lead to cycling (infinite loop). One way to solve it is to perturb b by a small random
amount in each coordinate. Another way is to break ties in choosing entering and leaving
variables carefully, e.g., by smallest index (known as Bland’s rule).

Simplex Outstanding Issues
What if initial basic solution is not feasible, i.e., it is not true that 𝑏 ≥ 0?

If optimum value is 0, then we can extract initial feasible solution for our LP.

Otherwise, LP is infeasible!

Simplex Outstanding Issue
Pseudocode? Proof of correctness? Analysis of runtime?

See textbook for details!

The End!

