
CSC373: Algorithm Design, Analysis and
Complexity
Fall 2017

Allan Borodin

October 25, 2017

1 / 39

Week 7 : Annoucements

Term test 1 has been graded and hopefully Assignment 1 will be
available this week on Markus.

Term test 1, Question 1 wording issue. We are resolving this by
gradding the term test out of 30 (instead of 45). Students were able
to obtain bonus marks for partial or good answers (and even for ”I do
not know ” answers).

Next assignment: The questions for Assignment 2 have been
posted. Due date: Wednesday, November 15 at 10AM. We had to
delay the due date because of reading week. Part of todays lecture
will be devoted to clarifying any questions about the assignment.
Solutions will be posted by 11AM on November 15.

The second term test is scheduled for Thursday, Nov 16 at 5PM.

Some comments regarding questions posed on Piazza. For example,
here is a question posed on Piazza: ”What exactly is an encoding?”

2 / 39

More announcements

We are merging Greg’s and Sasa’s tutorial sections into one tutorial so
as to save TA hours (given the low attendance). Both Greg’s section
in BA2139 and Sasa’s sectionn in BA2145 will now meet in BA2145.

Answer to question posed in last class: If P 6= NP, then there are
languages in L ∈ NP \ P such that L is not NP-complete. I was
pretty sure of this being the result (and that there would be a rich
substructure between P and NP) but I forgot the reference. See
Richard Ladners’ 1975 paper “On the Structure of Polynomial Time
Reducibility”.

3 / 39

Todays agenda

Reviewing Karp tree of reductions

Easy transformations: Independent Set ≤p Vertex Cover and Vertex
Cover ≤p Set Cover

Review transformation of 3SAT to Subset Sum

Some comments on the “art” of provng NP-completeness.

A not so easy transformation: 3SAT ≤p 3-Color

Turing machines and proving that 3SAT is NP-complete.

4 / 39

A tree of reductions/transformations

45

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time
ti, release time ri, and deadline di, is it possible to schedule all jobs on
a single machine such that job i is processed with a contiguous slot of
ti time units in the interval [ri, di] ?

Claim. SUBSET-SUM ! P SCHEDULE-RELEASE-TIMES.
Pf. Given an instance of SUBSET-SUM w1, …, wn, and target W,

! Create n jobs with processing time ti = wi, release time ri = 0, and no
deadline (di = 1 + "j wj).

! Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W+1.

W W+1 S+10

Can schedule jobs 1 to n anywhere but [W, W+1]

job 0

Algorithm Design by Éva Tardos and Jon Kleinberg • Copyright © 2005 Addison Wesley • Slides by Kevin Wayne

8.9 A Partial Taxonomy of Hard Problems

47

Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction

5 / 39

Independent Set ≤p Vertex Cover

Let G = (V ,E) be a graph.
Definitions:

1 A subset S ⊆ V is an independent set in G if for all
u, v ∈ S , (u, v) /∈ E .

2 A subset S ⊆ V is a vertex cover if for all e = (u, v) ∈ E , at least one
of u, v is in S .

3 Independent Set = {(G , k) : G has independent set of size at least k}
4 Vertex Cover = {(G , `) : G has a vertex cover of size at most `}

Easy claim: S is an independent set in G iff V \ S is a vertex cover in G .

Therefore, the required transformation is (G , k) is transformed to
(G , |V | − k).

6 / 39

Vertex Cover ≤p Set Cover

Definition:
Let U = {u1, u2, . . . , un} be a universe of elements of size n. Let
C = {S1, S2, . . . ,Sm} with Si ⊆ U be a collection of subsets of U.

A subcollection C′ ⊆ C is a set cover if for all uj ∈ U, there is at least one
Sj ∈ C′ : ui ∈ Sj .

Set Cover = {C has a set cover of size at most `}

We can transform Vertex Cover into an instance (i.e. a special case) of
Set Cover by letting the sets be vertices whose elements are the adjacent
edges. That is Si = {e ∈ E : vertex vi is one of the end points of edge e}

Vertex Cover and Set Cover are well known optimization problems where
in the weighted versions of these problems the vertcies (resp. the sets)
have weights and the goal is to minimize the total weight of the covering.

7 / 39

3SAT reduces to Subset Sum

Subset Sum = {(a1, . . . , an, t) : ∃S ⊆ {1, . . . , n}
∑

i∈S = t}
This is a somewhat more difficult transformation.

Theorem

3SAT ≤p Subset Sum

Given an instance F of 3SAT, we construct an instance of Subset
Sum that has solution iff F is satisfiable.

In the following array (next slide), rows represent integers represented
in decimal. For each propositional variable we have a column
specifying that each variable has just one truth assignment (i.e., true
= 1) and for each clause we have a column saying that the clause is
satisfiable. The “dummy rows” makes it possible to sum each column
to 4 if and only if there is at least one literal set to true. Note that
the decimal representation nsures that addition in each column will
not carry over to the next column.

8 / 39

3SAT reduces to Subset Sum continued

The figure illustrates how a specific 3CNF formula is transformed into a
set of integers and a target (bottow row).

Wnat has to be proven?
9 / 39

Some consequences of Subset Sum completeness

SubsetSum ≤p Knapsack where

Knapsack ={
(〈s1, v1〉, . . . , 〈sn, vn〉;B,V) | ∃S :

∑
i∈S si ≤ B,

∑
i∈S vi ≥ V

}
SubsetSum ≤p Partition where

Partition = {a1, . . . , an | ∃S ,
∑

i∈S ai = 1
2

∑n
i=1 ai}.

As suggested in Karp’s trree of reductions, many scheduling problems can
be shown to be NP-hard by a reduction from Subset Sum and, more
specifically, sometimes from Partition.

10 / 39

Reviewing how to show some L is NP complete.

We must show L ∈ NP. To do so, we provide a polynomial time
verification predicate R(x , y) and polynomial length certificate y for
every x ∈ L; that is, L = {x |∃y ,R(x , y) and |y | ≤ q(|x |)}.

We must show that L is NP hard (say with respect to polynomial
time tranformations); that is, for some known NP complete L′, there
is a polynomial time transducer function h such that x ∈ L′ iff
h(x) ∈ L. This then establishes that L′ ≤p L.

Warning The reduction/transformation L′ ≤p L must be in the correct
direction and h must be defined for every input x ; that is, one must
also show that if h(x) ∈ L then x ∈ L′ as well as showing that if
x ∈ L′ then h(x) ∈ L.

11 / 39

Some transformations are easy, some not

Tranformations are (as we have been arguing) algorithms computing a
function and hence like any algorithmic problem, sometimes there are
easy solutions and sometimes not.

In showing NP-completeness it certainly helps to choose the right
known NP-complete problem to use for the transformation.

In the Karp tree, there are some transformations that are particularly
easy such as :

I IndependentSet ≤p VertexCover
I VertexCover ≤p SetCover

A transforrmation of moderate difficulty is 3SAT ≤p 3-COLOR

I am using Kevin Wayne’s slides to illustrate the transformation. See
slides for “Poly-time reductions” in
http://www.cs.princeton.edu/courses/archive/spring05/cos423/lectures.php

12 / 39

http://www.cs.princeton.edu/courses/archive/spring05/cos423/lectures.php

3CNF ≤p 3-COLOR: Outline of Transformation

29

3-Colorability

Claim. 3-SAT ! P 3-COLOR.

Pf. Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

30

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.

T

B

F

!

x1

!

x
1

!

x2

!

x
2

!

xn

!

x
n

!

x3

!

x
3

true false

base

31

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

T F

B

!

x1

!

x
2

!

x3

!

C
i

= x
1
V x

2
V x

3

6-node gadget

true false

32

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

!

C
i

= x
1
V x

2
V x

3

T F

B

!

x1

!

x
2

!

x3

not 3-colorable if all are red

true false

contradiction

If φ is a 3CNF formula in n variables and m clauses, then h(φ) = Gφ

will have 2n + 6m + 3 nodes and 3n + 13m + 3 edges.
13 / 39

3CNF ≤p 3-COLOR: Consistent literals

29

3-Colorability

Claim. 3-SAT ! P 3-COLOR.

Pf. Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

30

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.

T

B

F

!

x1

!

x
1

!

x2

!

x
2

!

xn

!

x
n

!

x3

!

x
3

true false

base

31

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

T F

B

!

x1

!

x
2

!

x3

!

C
i

= x
1
V x

2
V x

3

6-node gadget

true false

32

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

!

C
i

= x
1
V x

2
V x

3

T F

B

!

x1

!

x
2

!

x3

not 3-colorable if all are red

true false

contradiction

14 / 39

3CNF ≤p 3-COLOR: The clause gadget

29

3-Colorability

Claim. 3-SAT ! P 3-COLOR.

Pf. Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

30

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.

T

B

F

!

x1

!

x
1

!

x2

!

x
2

!

xn

!

x
n

!

x3

!

x
3

true false

base

31

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

T F

B

!

x1

!

x
2

!

x3

!

C
i

= x
1
V x

2
V x

3

6-node gadget

true false

32

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

!

C
i

= x
1
V x

2
V x

3

T F

B

!

x1

!

x
2

!

x3

not 3-colorable if all are red

true false

contradiction

15 / 39

Gφ is 3-colourable ⇒ φ satisfiable

29

3-Colorability

Claim. 3-SAT ! P 3-COLOR.

Pf. Given 3-SAT instance ", we construct an instance of 3-COLOR that
is 3-colorable iff " is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and

connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

30

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.

T

B

F

!

x1

!

x
1

!

x2

!

x
2

!

xn

!

x
n

!

x3

!

x
3

true false

base

31

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

T F

B

!

x1

!

x
2

!

x3

!

C
i

= x
1
V x

2
V x

3

6-node gadget

true false

32

3-Colorability

Claim. Graph is 3-colorable iff " is satisfiable.

Pf. # Suppose graph is 3-colorable.
! Consider assignment that sets all T literals to true.
! (ii) ensures each literal is T or F.
! (iii) ensures a literal and its negation are opposites.
! (iv) ensures at least one literal in each clause is T.

!

C
i

= x
1
V x

2
V x

3

T F

B

!

x1

!

x
2

!

x3

not 3-colorable if all are red

true false

contradiction

16 / 39

φ satisfiable ⇒ Gφ is 3-colourable

33

3-Colorability

Claim. Graph is 3-colorable iff ! is satisfiable.

Pf. " Suppose 3-SAT formula ! is satisfiable.
! Color all true literals T.
! Color node below green node F, and node below that B.
! Color remaining middle row nodes B.
! Color remaining bottom nodes T or F as forced. !

T F

B

!

x1

!

x
2

!

x3

a literal set to true in 3-SAT assignment

!

C
i

= x
1
V x

2
V x

3

true false

34

Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

YES instance.

35

Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

NO instance.

36

Def. A graph is planar if it can be embedded in the plane in such a way
that no two edges cross.
Applications: VLSI circuit design, computer graphics.

Kuratowski's Theorem. An undirected graph G is non-planar iff it
contains a subgraph homeomorphic to K5 or K3,3.

Planarity

Planar K5: non-planar K3,3: non-planar

homeomorphic to K3,3

Note we are choosing precisely one green node in each clause to force
colouring.

17 / 39

Brief introduction to Turing machines

We are using the classical one tape TM. This is the simplest variant
to formalize which will enable the proof for the NP completeness of
SAT. In the proof, we are assuming (without loss of generality) that
all time bounds T (n) are computable in polynomial time.

Claim Any reasonable (classical) computing model algorithm running
in time T (n), can be simulated by a TM in time T (n)k for some k .
Hence we can use the TM model in the definition of P and NP.

Since we are only considering decision problems we will view TMs
that are defined for decision problems and hence do not need an
output other than a reject and accept state.

Following standard notation, formally, a specific TM is defined by a
tuple M = (Q,Σ, Γ, δ, q0, qacc , qrej)

We briefly explain (using the board) the model and notation. Note
that Q,Σ, Γ are all finite sets.

18 / 39

Satisfiability is NP-Complete
• SAT = { < φ > | φ is a satisfiable Boolean formula }
• Theorem: SAT is NP-complete.
• Lemma 1: SAT ∈ NP.
• Lemma 2: SAT is NP-hard.
• Proof of Lemma 1:

– Recall: L ∈ NP if and only if (∃ V, poly-time verifier) (∃ p, poly)
x ∈ L iff (∃ c, |c| ≤ p(|x|)) [V(x, c) accepts]

– So, to show SAT ∈ NP, it’s enough to show (∃ V) (∃ p)
φ ∈ SAT iff (∃ c, |c| ≤ p(|x|)) [V(φ, c) accepts]

– We know: φ ∈ SAT iff there is an assignment to the variables such
that φ with this assignment evaluates to 1.

– So, let certificate c be the assignment.
– Let verifier V take a formula φ and an assignment c and accept

exactly if φ with c evaluates to true.
– Evaluate φ bottom-up, takes poly time.

19 / 39

Satisfiability is NP-Complete
• Lemma 2: SAT is NP-hard.
• Proof of Lemma 2:

– Need to show that, for any A ∈ NP, A ≤p SAT.
– Fix A ∈ NP.
– Construct a poly-time f such that

w ∈ A if and only if f(w) ∈ SAT.

– By definition, since A ∈ NP, there is a nondeterministic
TM M that decides A in polynomial time.

– Fix polynomial p such that M on input w always halts, on
all branches, in time ≤ p(|w|); assume p(|w|) ≥ |w|.

– w ∈ A if and only if there is an accepting computation
history (CH) of M on w.

A formula, write it as φw.

20 / 39

Satisfiability is NP-Complete
• Lemma 2: SAT is NP-hard.
• Proof, cont’d:

– Need w ∈ A if and only if f(w) (= φw) ∈ SAT.
– w ∈ A if and only if there is an accepting CH of M on w.
– So we must construct formula φw to be satisfiable iff there

is an accepting CH of M on w.
– Recall definitions of computation history and accepting

computation history from Post Correspondence Problem:
C0 # C1 # C2 …

• Configurations include tape contents, state, head position.
– We construct φw to describe an accepting CH.
– Let M = (Q, Σ, Γ, δ, q0, qacc, qrej) as usual.
– Instead of lining up configs in a row as before, arrange in

(p(|w|) + 1) row × (p(|w|) + 3) column matrix:

21 / 39

Proof that SAT is NP-hard
• φw will be satisfiable iff there is an accepting CH of M on w.
• Let M = (Q, Σ, Γ, δ, q0, qacc, qrej).
• Arrange configs in (p(|w|) + 1) × (p(|w|) + 3) matrix:

q0 w1 w2 w3 … wn -- -- … --
…
…

…
• Successive configs, ending with accepting config.
• Assume WLOG that each computation takes exactly p(|w|)

steps, so we use p(|w|) + 1 rows.
• p(|w|) + 3 columns: p(|w|) for the interesting portion of the

tape, one for head and state, two for endmarkers.

22 / 39

Proof that SAT is NP-hard
• φw is satisfiable iff there is an accepting CH of M on w.
• Entries in the matrix are represented by Boolean variables:

– Define C = Q ∪ Γ ∪ { # }, alphabet of possible matrix entries.
– Variable xi,j,c represents “the entry in position (i, j) is c”.

• Define φw as a formula over these xi,j,c variables, satisfiable
if and only if there is an accepting computation history for w
(in matrix form).

• Moreover, an assignment of values to the xi,j,c variables that
satisfies φw will correspond to an encoding of an accepting
computation.

• Specifically, φw = φcell ∧ φstart ∧ φaccept ∧ φmove , where:
– φcell : There is exactly one value in each matrix location.
– φstart : The first row represents the starting configuration.
– φaccept : The last row is an accepting configuration.
– φmove : Successive rows represent allowable moves of M.

23 / 39

φcell

• For each position (i,j), write the conjunction of two formulas:

∨c ∈ C xi,j,c : Some value appears in position (i,j).

∧c, d ∈ C, c ≠ d (¬xi,j,c ∨ ¬xi,j,d): Position (i,j) doesn’t contain
two values.

• φcell: Conjoin formulas for all positions (i,j).

• Easy to construct the entire formula φcell given w input.
• Construct it in polynomial time.
• Sanity check: Length of formula is polynomial in |w|:

– O((p(|w|)2) subformulas, one for each (i,j).
– Length of each subformula depends on C, O(|C|2).

24 / 39

φstart

• The right symbols appear in the first row:
q0 w1 w2 w3 … wn -- -- … --

φstart: x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ x1,4,w2 ∧ …
∧ x1,n+2,wn ∧ x1,n+3,-- ∧ …
∧ x1,p(n)+2,-- ∧ x1,p(n)+3,#

25 / 39

φaccept

• For each j, 2 ≤ j≤ p(|w|) + 2, write the formula:

xp(|w|)+1,j,qacc

• qacc appears in position j of the last row.
• φaccept: Take disjunction (or) of all formulas for all j.
• That is, qacc appears in some position of the last

row.

26 / 39

φmove

• As for PCP, correct moves depend on
correct changes to local portions of
configurations.

• It’s enough to consider 2 × 3 rectangles:
• If every 2 × 3 rectangle is “good”, i.e.,

consistent with the transitions, then the
entire matrix represents an accepting CH.

• For each position (i,j), 1 ≤ i ≤ p(|w|), 1 ≤ j ≤
p(|w|)+1, write a formula saying that the
rectangle with upper left at (i,j) is “good”.

• Then conjoin all of these, O(p(|w|)2) clauses.
• Good tiles for (i,j), for a, b, c in Γ:

a

a b c

cb

#

a b

ba

a

a b #

#b

27 / 39

φmove

• Other good tiles are defined in terms of the
nondeterministic transition function δ.

• E.g., if δ(q1, a) includes tuple (q2, b, L), then
the following are good:
– Represents the move directly; for any c:
– Head moves left out of the rectangle; for any c, d:
– Head is just to the left of the rectangle; for any c, d:
– Head at right; for any c, d, e:
– And more, for #, etc.

• Analogously if δ(q1, a) includes (q2, b, R).
• Since M is nondeterministic, δ(q1, a) may

contain several moves, so include all the
tiles.

c

q2 c b

aq1

q1

d b c

ca

a

b c d

dc

d

d q2 c

q1c

e

e d q2

cd

28 / 39

• The good tiles give partial constraints on the computation.
• When taken together, they give enough constraints so that

only a correct CH can satisfy them all.
• The part (conjunct) of φmove for (i,j) should say that the

rectangle with upper left at (i,j) is good:
• It is simply the disjunction (or), over all allowable tiles, of

the subformula:

xi,j,a1 ∧ xi,j+1,a2 ∧ xi,j+2,a3 ∧ xi+1,j,b1 ∧ xi+1,j+1,b2 ∧ xi+1,j+2,b3

• Thus, φmove is the conjunction over all (i,j), of the
disjunction over all good tiles, of the formula just above.

φmove

a1

b1 b2 b3

a3a2

29 / 39

• φmove is the conjunction over all (i,j), of the
disjunction over all good tiles, of the given six-
term conjunctive formula.

• Q: How big is the formula φmove?
• O(p(|w|)2) clauses, one for each (i,j) pair.
• Each clause is only constant length, O(1).

– Because machine M yields only a constant number of
good tiles.

– And there are only 6 terms for each tile.
• Thus, length of φmove is polynomial in |w|.
• φw = φcell ∧ φstart ∧ φaccept ∧ φmove , length also poly in |w|.

φmove

30 / 39

• φw = φcell ∧ φstart ∧ φaccept ∧ φmove , length poly in |w|.
• More importantly, can produce φw from w in time that is

polynomial in |w|.
• w ∈ A if and only if M has an accepting CH for w if and

only if φw is satisfiable.
• Thus, A ≤p SAT.
• Since A was any language in NP, this proves that SAT is

NP-hard.
• Since SAT is in NP and is NP-hard, SAT is NP-complete.

φmove

31 / 39

Clay Math Institute Millenium Problems:
$1,000,000 each

1 Birch and Swinnerton-Dyer Conjecture

2 Hodge Conjecture

3 Navier-Stokes Equations

4 P = NP?

5 Poincaré Conjecture (Solved)1

6 Riemann Hypothesis

7 Yang-Mills Theory

1Solved by Grigori Perelman 2003: Prize unclaimed
32 / 39

How important is the P vs NP question

Lance Fortnow has an article on P and NP in the September 2009
Communications of the ACM, in which he says

“The P versus NP problem has gone from an interesting problem
related to logic to perhaps the most fundamental and important
mathematical question of our time, whose importance only grows
as computers become more powerful and widespread.”

Claim: It is worth well over the $1,000,000

33 / 39

How important is the P vs NP question

Lance Fortnow has an article on P and NP in the September 2009
Communications of the ACM, in which he says

“The P versus NP problem has gone from an interesting problem
related to logic to perhaps the most fundamental and important
mathematical question of our time, whose importance only grows
as computers become more powerful and widespread.”

Claim: It is worth well over the $1,000,000

34 / 39

Other long standing and fundamental open problems
in complexity theory

For any language L (i.e., decision problem), we define L̄ = {x : x /∈ L}.
Similarly, for any class C of languages the class co − C = {L̄ : L ∈ C}.
An open problem related to the P vs NP issue is the whether or not
NP = co − NP.

Conjecture: S̄AT /∈ NP

We have the following fact: NP = co − NP iff L̄ ∈ NP for some (any)
NP-complete language L.

As mentioned before It is widely believed that NP 6= co − NP
How would you verify that a CNF formula F is not satisfiable?

35 / 39

Why we believe integer factoring is not NP-hard

As mentioned, some cryptographic schemes (i.e. for decoding a
cryptographically encoded message) rely on the assumption that factoring
can not be done efficiently (even in some average case sense).

However, it is believed that factoring is not NP-hard. To make this
comment precise, consider the following decision problem which can be
used to factor an integer: FACTOR = {(x ,m)|x has a proper factor ≤ m}.
It should be clear that FACTOR is in NP.

Claim: co − FACTOR = {(x ,m)|x /∈ FACTOR} is in NP. Hence we do
not believe FACTOR can be NP complete.

To see this, we first note that that PRIME = {x |x is a prime number} is
now known to be in P. (It is sufficient to know that PRIME is in NP
which was known since the early 1970’s.) Then a certificate y for (x .m)
being in co − FACTOR is the prime factorization
y = (p1, e1, p2, e2, . . . pr , er) of x which can be verified by checking that
each pi is a prime and that x = (pe11 · p

e2
2 . . . · perr)

36 / 39

More complexity theory issues

After sequential time, the most studied complexity measure is space. If
one maintains the input so that it is “read-only”, it is meaningful to
consisder sublinear (e.g. log n) space bounds.

Analogous to deteriministic (resp. non-deterministic) time bounded classes
DTIME (T) (resp. NTIME (T) we can define space bounded classes.

n contrast to what is widely believed about sequential time bounded
classes, we have the following two Theorems for “reasonable space bounds
S(n) ≥ log n:

NSPACE (S) ⊆ DSPACE (S2)
NSPACE (S) = co − NSPACE (S)

It is an open problem as to whether or not NSPACE (S) = DSPACE (S).

It is also clear (for the models of computation we consider) that both
DSPACE (S) and NSPACE (S) are contained in ∪cDTIME (cS(n)). Why?
Hence DSPACE (log n) ⊆ P.

Conjecture: DSPACE 6= P
37 / 39

And more complexity issues

Later in the course we will devote a lecture to randomized algorithms. For
a number of computational problems, the use of randmization will provide
the best known time bounds. And in some computational settings (e,g,
cryptography, sublinear time algorithms), randomization is necessary.

With regard to complexity theory, analgous to the class P of polynomial
time decisions, we have three different classes of decisions problems
solvable in randomized polynomial time. These classes are ZPP (expected
polynomial time, no error), RP (polynomial time, one sided error) and
BPP (polynomial time, two sided error).

While it is clear that RP ∩ co − RP = ZPP ⊆ RP ⊆ BPP, it is not known
if any of these inclusions are proper.

Moreover, it is not known if RP = P or BPP = P. Lately, some prominent
complexity theorists conjecture tht BPP = P in which case, ignoring
polynomial factors, randomization can be avoided.

38 / 39

One final complexity comment

Although the P vs NP issue is not resolved, there are “natural” problems
which provably require (say) exponential time. (In fact, there are some
problems which require “much more” than exponential time.

Without defining things carefully, one such problem is the decision problem
for the first order theory of the reals. That is, we want to decide when a
fully quantified first order arithmetic formual is true or false when the
variables are real numbers.

For example, the statement ∀x > 0, ∃y [y2 = x] is true for real numbers
but false for say the integers or rational numbers. Similarly, ∃y [y2 = −1]
is true for the complex numbers but false for the real numbers.
While it is known that this decision problem is computable (in time ≈ 22

n
)

where n is the length of the 1st order statment, it is also proven that the
decision problem cannot be done in time say 2n.

39 / 39

	Week 7

