
CSC373: Algorithm Design, Analysis and
Complexity
Fall 2017

Allan Borodin

October 18, 2017

1 / 1

Week 6 : Annoucements

We have begun grading the test and the plan is to return those in a
week. The assignment grading will be completed after that.

Discussion of the term test questiions will be part of tomorrow
tutorials. Not sure if we will post solutions sketches. Why not?

Next assignment: The first two questions for Assignment 2 have
been posted. Due date: Thursday, November 9 at 2PM. We plan to
post 3 more questions on complexity theory to complete the
assignment.

We are making this assignment and the next assignment shorter than
the last assignment. We try to post questions as soon as the relevant
material is presented. It is best to start working on questions as soon
as possible and not wait until the due date.

I believe that a course should take say 10 or at most 12 hours per
week. Of course, if you wait for the week that an assignment is due,
the time spent on the course that week could be considerably more.

2 / 1

Todays agenda

Note: Todays agenda will stretch into next week

Review of basic aspects of complexity theory.

Encoding of inputs/outputs

Functions, search problems, and optimization problems

Definitions of decision problems (equivalently) languages in the
classes P and NP

Polynomial time reductions and the concept of NP completeness.

Polynomial time reductions vs polynomial time transformations.

A tree of polynomial time transformations starting from 3SAT.

Examples of polynomial time transformations.

3 / 1

Computational complexity theory

Computational complexity aims to measure the amount of resources
required for various computational problems.

In order to makes this into a theory, we need to have precise models of
computation and measures of complexity within those models.

We will later introduce the Turing machine model, a precise mathematical
model, and claim that all “classical” computational models can be
“efficiently” simulated by Turing machines. For our purposes, “efficiently”
will mean within a polynomial factor.

For what is called “fine-grained complexity”, where we care say about the
difference between n2 and n3, we use other formalizations and appropriate
definitions of “efficiently”. This may be one of the topics we will consider
in the last week of the course.

4 / 1

What are the main measures of complexity that we
study?

sequential time. For the P vs NP issue, this is the relevant measure
of complexity.

memory referred to as space in complexity theory.

parallel time

In randomized algorithms, we also consider the amount of
randomness used.

And, in addition, we study tradeoffs bewteen these resources. For
example, time vs space.

We now continue our discussion from last week with a brief review.

5 / 1

Encoding of inputs and outputs

We are always assuming that inputs and outputs are encoded as
strings over some finite alphabet S with at least 2 symbols.

I Sn denotes the set of all finite strings of length n over the alphabet S .
I The empty string is the only string of length 0.
I S∗ =

⋃
n≥0 S

n denotes the set of all finite strings over the alphabet S

We can use as many symbols as we want but 2 suffices for our
purpose. (Note: finitely many symbols on a keyboard.)

We can also encode in unary, but that causes an exponential blowup
in representation.

We can encode a set of inputs or outputs w1, . . . ,wn by having a
special symbol (say #) to separate the inputs but again this can all
be encoded back into 2 symbols.

If we need to distinguish components of an input, we can denote such
an encoding of many inputs (or outputs) as 〈w1, . . . ,wn〉.

I We will usually not need to be so careful about the distinction between
an object G and its encoding 〈G 〉.

6 / 1

What does it mean to be efficiently computable?

Let n denote “size” (i.e. the encoded length) of the inputs and
outputs of the problem.
Using diagonalization, it is not difficult to show that

For any computable time bound T (n), there are computable functions (in
particular, decision problems) not computable within time T(n) for

inputs/outputs of size n.

Following Cobham and Edmonds (circa 1965), we will equate the
intuitive concept of “efficiently computable” with computable in
polynomial time (i.e. time bounded by a polynomial function of the
encoded length of the inputs and outputs).

I This has sometimes been called the Extended Church-Turing Thesis.
I As we reamrked last class, this hypothesis is not literally believed in

contrast to the Church-Turing Thesis.
I But it is an abstraction that has led to great progress in computing.

Informal claim restated: Any function (polynomial time)
computable is (polynomial time) computable by a Turing machine.

7 / 1

What are the objects of study?

Since it suffices to encode all inputs as finite strings over the alphabet
S = {0, 1} = {false, true}, we often refer to the complexity issues of
such computations as Boolean complexity theory.

I This is in contrast to, say, arithmetic complexity theory, or the theory
of real valued computation.

Our general objects of study (for Boolean complexity theory) are the
computation of:

1 Functions f : S∗ → S∗

2 Decision problems
F Let R(x , y) ⊆ S∗ × S∗ be a relation.
F Given x , determine (i.e. output YES or NO) if there exists a y

satisfying R(x , y).
3 Search problems

F Let R(x , y) ⊆ S∗ × S∗ be a relation.
F Given x , output a y satisfying R(x , y) or say that no such y exists.

4 Optimization problems
F Let R(x , y) ⊆ S∗ × S∗ be a relation, and c : S∗ × S∗ → < be an

objective function.
F Given x , output a y satsifying R(x , y) so as to minimize (or maximize)

c(x , y) or say that no such y exists.
8 / 1

Polynomial time computable functions

A function f : S∗ → S∗ is computable in polynomial time T (·) if:
1 T (n) is a polynomial.
2 There is an algorithm (to be precise a Turing machine or an idealized

RAM program with an appropriate instruction set) such that:
For all inputs w ∈ S∗, the algorithm halts using at most T (n) “time
steps ” where n = |w |+ |f (w)|.

We can define polynomial time search problems, optimization
problems and decision problems similarly.

We will generally not be dealing with functions where |f (w)| > |w |.
So it will suffice to let n be the encoded length of the input.

In particular, for decision problems, n will always refer to the length of
the encoded input.

We let P denote the class of decision problems that are solvable
(decideable) in polynomial time. We sometimes abuse notation and
also use P to denote any problem computable in polynomial time.

9 / 1

Computational Complexity Theory

Classifies problems according to their computational difficulty.

The class P (Polynomial Time) [Cobham, Edmonds, 1965]

P consists of all problems that have an efficient (e.g. n, n2...)
algorithm. (n is the input length)

Examples in P

Addition, Multiplication, Square Roots

Shortest Path (Google Maps)

Network flows (Internet Routing)

Pattern matching (Spell Checking, Text Processing)

Fast Fourier Transform (Audio and Image Processing, Oil Exploration)

Recognizing Prime Numbers [Agrawal-Kayal-Saxena 2002]

. . .

10 / 1

Polynomial time continued

One of the nice properties of the Turing machine model is that the
concept of a computational step and hence time is well defined.

Warning: If say a RAM has a multiplication operation, then by
repeatedly squaring we can compute 22

n
in n operations.

I We argue that we cannot assume such an operation only costs 1 time
unit since the operands will have 2n bits and hence we might be
encoding an exponential time computation within such operations.

In particular, it can be shown that if we do not account properly for
the cost of RAM operations, then we can factor integers (and thus be
able to break some encryption schemes such as RSA) in polynomial
time but such a computational algorithm would not be considered
realistic.

One way to deal with such RAM models is to say that any operation
on operands of length m requires time m.

11 / 1

Classical vs quantum computation

Quantum computation takes advantage of principles of quantum mechanics
(such as “entangled states”) which allow a quantum state involving n ‘qubits’
to be a “superposition” of up to 2n possible bit strings.

In 1994 Peter Shor proved that a quantum computer can factor numbers into
primes in polynomial time.

So if large quantum computers can be built, they could crack the RSA
encryption scheme. (There are other ways that RSA could be broken (side
channel attacks.)

The Catch: Despite substantial effort, physicists have so far been unable to
build an actual quantum computer large enough to process more than a dozen
or so bits of information.

Caveat: Quantum cryptography provides a promising approach to secure
communication in which security (rather than complexity) depends on principles
of quantum mechanics.

Note

Quantum computation does NOT change the Church-Turing thesis, that is, what is
computable. But it does seem to change what is computable in polynomial time.

12 / 1

What have we been doing so far in this course

So far, we have almost entirely been presenting polynomial time
algorithms.

As one exception, we did consider the pseudo polynomial time DP for
the knapsack problem. Additiionally, we presented the O(n22n) time
DP for the travelling salesman problem improving upon the
brute-force n! time algorithm.

Many times we didn’t care if the operands (say in interval scheduling)
were real numbers or integers.

We just assumed that we could do basic arithmetic operations and
comparisons in one step.

This was not a problem because we didn’t use algorithms that would
build up large integers. (Note that using only addition, repeated
doubling can only produce a number as large as 2n in n steps).

13 / 1

NP-hardness

We have often been refering to NP-hardness when we considered
computing optimal solutions to a number of optimization problems.

We alluded to the widely held belief that such problems cannot be
computed efficiently (for all inputs).

This will be expressed as the conjecture (sometimes called Cook’s
Hypothesis) that P 6= NP. When we say that an optimization
problem is NP-hard, it implies that we cannot optimally solve such a
problem if we assume P 6= NP.

We will later consider approximate optimization algorithms.

What is the evidence we have for believing in this conjecture?
I Briefly stated, the main evidence is the extensive number of problems

which can be shown to be “equivalent” in the sense that if any one of
them can be computed efficiently (i.e. in P) then they all are.

I These are problems that have been studied for many years (decades
and in certain cases centuries) without anyone being able to find
polynomial time algorithms.

14 / 1

What is NP?

The class NP (Nondeterministic Polynomial Time)

NP consists of all search problems for which a solution can be
efficiently (i.e. in polynomial time) verified.

More specifically, a set (or language) L is in the class NP if there is a
polynomial time computable R(x , y) and a polynomial time
computable function f such that for all x ∈ L, there is a certificate y
such that |y | ≤ f (|x |) and R(x , y).

Examples in NP (besides everything in P)

Given an integer x (in say binary of decimal representation), is it a
composite number? (This is in fact a polynomial time computable
decision problem.)

Given a graph G , can it be vertex colored in 3 colors?

Given a set S = {ai} of integers can it partitioned into two subsets S1
and S2 such that

∑
ai∈S1 ai =

∑
ai∈S2 ai?

15 / 1

P versus NP

P: Problems for which solutions/certificates can be efficiently found

NP: Problems for which solutions/certificateds can be efficiently
verified

Conjecture

P 6= NP

Most computer scientists believe this conjecture.

But is seems to be incredibly hard to prove.

16 / 1

Why is proving P 6= NP difficult?

One reason is that some search problems in NP turn out to be
relatively easy. An example is the maximum bipartite matching
problem introduced in Week 4). More generally, matching in any
graph is polynomial time solvable but this is not an easy result.

The matching problem for undirected graphs

Given a large group of people, we want to pair them up to work on
projects. We know which pairs of people are compatible, and (if possible)

we want to put them all in compatible pairs.

If there are 50 or more people, a brute force approach of trying all
possible pairings would take billions of years.

However in 1965 Jack Edmonds found an ingenious efficient
algorithm. So this problem is in P.

There is often a “fine line” between what is and what is not known to
be efficiently solvable (e.g. polynomial time 2SAT vs NP-hard 3SAT).

17 / 1

NP-Complete Problems

These are the hardest NP problems.

A problem A is p-reducible to a problem B if an “oracle” (i.e. a
subroutine) for B can be used to efficiently solve A.

If A is p-reducible to B, then any efficient procedure for solving B can
be turned into an efficient procedure for A.

If A is p-reducible to B and B is in P, then A is in P.

Definition

A problem B is NP-complete if B is in NP and every problem A in NP is
p-reducible to B.

Theorem

If A is NP-complete and A is in P, then P = NP.

To show P = NP you just need to find a fast (polynomial-time) algorithm
for any one NP-complete problem!!!

18 / 1

Conjunctive normal form propositional formulas

The SAT problem is defined in terms of inputs given as conjunctive normal
form (CNF) formulas.
Here are the standard definitions regarding CNF propositional formulas:

A literal is a propositional variable x or its negation x̄ .

A clause C = `1 ∨ `2 . . . ∨ `r is a disjunction of literals.

A CNF formula F = C1 ∧ C2 . . . ∧ Cm is a conjunction of clauses.

A CNF formula is a kCNF formula if every clause has at most k
literals. For our purposes we will abuse terminology and say that
every clause has exactly k literals. It is always assumed that no
variable appears twice in any clause.

Satisfiability

Literal. A Boolean variable or its negation.

 
Clause. A disjunction of literals.

 
Conjunctive normal form (CNF). A propositional 
formula Φ that is a conjunction of clauses.

 
SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals  
(and each literal corresponds to a different variable).

 
 
 
 
 
Key application. Electronic design automation (EDA).

21

€

Cj = x1 ∨ x2 ∨ x3

€

xi or xi

€

Φ = C1 ∧C2 ∧ C3∧ C4

yes instance: x1 = true, x2 = true, x3 = false, x4 = false

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

Figure: An example of a 3CNF formula

19 / 1

Sat and 3SAT

A formula is satisfiable if there is an assignment of truth values (i.e.
TRUE, FALSE) to the propositional variables such that the formula
evaluate to TRUE. For CNF formulas, this means that there is an
assignment of truth values such that every clause is TRUE.

SAT (resp. 3SAT) is the decision problem that determines ifn a CNF
(resp. 3CNF) formula is satisfiable.

Following the initial results of Cook and Karp, our development of NP
complete problems rests on showing that SAT is NP complete. We have
to show how to reduce any NP decision problem to SAT.

We delay the proof of that Theorem until after some examples of
reductions. Some reductions will be relatively easy and some not.

Many research papers were written in the early 1970’s establishiing
NP-completeness for specific problems. The monograph by Garey and
Johnson was a valued reference keeping track of many examples. There
are web sites devoted to particular domains listing NP complete problems.

20 / 1

A great many (thousands) of problems have been shown to be
NP-complete.

Most scheduling related problems (delivery trucks, exams etc) are
NP-complete.

The following simple exam scheduling problem is NP-complete:

Example

We need to schedule N examinations, and only three time slots are
available.

We are given a list of exam conflicts: A conflict is a pair of exams
that cannot be offered at the same time, because some student needs
to take both of them.

Problem: Determine if there is a way of assigning each exam to one
of the time slots T1, T2, T3, so that no two conflicting exams are
assigned to the same time slot.

This problem is known as the graph 3-colourability problem.

21 / 1

Graph 3-Colourability

Problem

Given a graph, determine whether each node can be coloured red, blue, or
green, so that the endpoints of each edge have different colours.

Imagine trying to decide this when there are say hundreds or thousands of
nodes.

22 / 1

Graph 3-Colourability

Problem

Given a graph, determine whether each node can be coloured red, blue, or
green, so that the endpoints of each edge have different colours.

Imagine trying to decide this when there are say hundreds or thousands of
nodes.

22 / 1

Some more remarks on graph coloring

The natural graph coloring optimization problem is to color a graph
with the fewest number of colors.
We can phrase it as a search or decision problem by saying that the
input is a pair (G , k) and then

1 The search problem is to find a k-coloring of the graph G if one exists.
2 The decision problem is to determine whether or not G has a k

coloring.
3 Clearly, solving the optimization problem solves the search problem

which in turn solves the decision problem.
4 Conversely, if we can efficiently solve an NP complete decision problem

then we can efficiently solve the search and optimization problems.
This can be shown in general but we can also show it for specific
problems (e.g., for graph coloring as you will show).

Formally it is the graph coloring decision problem which is
NP-complete. More precisely, the graph coloring decision problem for
any fixed k ≥ 3 is NP-complete. However, 2-Colorability is in P.
Search or optimization problems that reduce to an NP-complete
decision problem are then called NP-hard.

23 / 1

Reducing Graph 3-Colourability to 3SAT

We begin our examples of reductions between NP decision problems with
a reduction that is implied by the fact that graph 3-colouring is in NP and
hence must reduce to 3SAT which is NP-complete. This reduction would
be considered a relatively easy reduction (certainly in hindsight) but it
illustrates how reductions can be between problems coming from what are
traditionally thought of as different research areas.

We are given a graph G with nodes, say V = {v1, v2, . . . , vn}
We are given a list of edges, say (v3, v5), (v2, v6), (v3, v6), . . .

We need to find a 3CNF formula F which is satisfiable if and only if
G can be colored with 3 colors (say red, blue, green). Note: Any
permutation or renaming of the colors does the change what follows.

We use three different types of Boolean VARIABLES
r1, r2, ..., rn (ri means node i is colored red)
b1, b2, ..., bn (bi means node i is colored blue)
g1, g2, ..., gn (gi means node i is colored green)

Here we are abusing terminology as “means” is really “intended meaning”
24 / 1

Here are the CLAUSES for the formula F :

I We need one clause for each node:
(r1 ∨ b1 ∨ g1) (node 1 gets at least one color)
(r2 ∨ b2 ∨ g2) (node 2 gets at least one color)
. . .
(rn ∨ bn ∨ gn) (node n gets at least one color)

I We could put in clauses saying that no node gets colored with more
than one color but coloring a node with more than one color can only
make it more difficult to color so we really don’t need these clauses.

I We need 3 clauses for each edge: For the edge (v3, v5) we need
(r3 ∨ r5) (v3 and v5 not both red)
(b3 ∨ b5) (v3 and v5 not both blue)
(g3 ∨ g5) (v3 and v5 not both green)

The size of the formula F is comparable to the size of the graph G .

Check: G is 3-colorable if and only if F is satisfiable.

25 / 1

On the nature of this polynomial time reduction

If we consider the previous reduction of 3-coloring to 3-SAT, it can be
seen as a very simple type of reduction.

Namely, given an input w to the 3-coloring problem, it is transformed
(in polynomial time) to say h(w) such that

w ∈ {G |G can be 3-colored} iff
h(w) ∈ {F |F is a satisfiable 3CNF formula}.

If we express the problems as decision probems, the reduction of
bipartite matching to maximum flows is also a transformation.

Polynomial time transformations

I We say that a language L1 is polynomial time transformable to L2 if there
exists a polynomial time function h such that

w ∈ L1 iff h(w) ∈ L2.

I The function h is called a polynomial time transformation.

26 / 1

Polynomial time reductions and transformations

In practice, when we are reducing one NP problem to another NP
problem, it will be a polynomial time transformation.

We will use the same notation ≤p to denote a polynomial time
reduction and polynomial time transformation.

As we have observed before if L1 ≤p L2 and L2 ∈ P, then L1 ∈ P.

The contrapositive says that if L1 ≤p L2 and L1 /∈ P, then L2 /∈ P.

≤p is transitive

I An important fact that we will use to prove NP completeness of problems is
that polynomial time reductions are transitive.

I That is L1 ≤p L2 and L2 ≤p L3 implies L1 ≤p L3.

The proof for transformations is easy to see. For say that L1 ≤p L2
via g and L2 ≤p L3 via h, then L1 ≤p L3 via h ◦ g ;
that is, w ∈ L1 iff h(g(w) ∈ L3.

27 / 1

Polynomial reductions/transformations continued

One fact that holds for polynomial time transformation but is believed
not to hold for polynomial time reductions is the following:

NP closed under polynomial time transformation

If L1 ≤p L2 and L2 ∈ NP then L1 ∈ NP.

The closure of NP under polynomial time transformations is also easy
to see. Namely,

Suppose

I L2 = {w | ∃y , |y | ≤ q(|w |) and R(w , y)} for some polynomial time relation
R and polynomial q, and

I L1 ≤p L2 via h.

Then

L1 = {x | ∃y ′, |y ′| ≤ q(|h(x)| and R ′(x , y ′)} where R ′(x , y ′) = R(h(x), y ′)

28 / 1

Polynomial reductions/transformations continued

On the other hand we do not believe that NP is closed under general
polynomial time reductions.

Specifically, for general polynomial time transformations we have
L̄ ≤p L. Here L̄ = {w |w /∈ L} is the language complement of L.

We do not believe that NP is closed under language complementation.

For example, how would you provide a short verification that a
propositional formula F is not satisfiable? Or how would you show
that a graph G cannot be 3-coloured?

While we will use polynomial time transformations between decision
problems/languages we need to use the more general polynomial time
reductions to say reduce a search or optimization problem to a
decision problem.

29 / 1

So how do we show that a problem is NP complete?

Showing that a language (i.e. decision problem) L is NP complete
involves establishing two facts:

1 L is in NP

2 Showing that L is NP-hard; that is showing

L′ ≤p L for every L′ ∈ NP

Usually establishing ?? is relatively easy and is done directly in terms
of the definition of L ∈ NP.

I That is, one shows how to verify membership in L by exhibiting an
appropriate certificate. (It could also be established by a polynomial
time transformation to a known L ∈ NP.)

Establishing ?? , i.e. NP-hardness of L, is usually done by reducing
some known NP complete problem L′ to L.

30 / 1

But how do we show that there are any NP
complete problems?

How do we get started?

Once we have established that there exists at least one NP complete
problem then we can use polynomial time reductions and transitivity
to establish that many other NP problems are NP hard.

Following Cook’s original result, we will show that SAT (and even
3SAT) is NP complete “from first principles”.

It is easy to see that SAT is in NP.

We will (later) show that SAT is NP hard by showing how to encode
an arbitrary “non-ddeterfministic” polynomial time (Turing)
computation by a CNF formula. We can simply think of such a
computation as one that “guesses” a certificate (i.e. makes
non-deterministic Turing machine operations) and then verifies the
certificate.

31 / 1

A tree of reductions/transformations

45

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time
ti, release time ri, and deadline di, is it possible to schedule all jobs on
a single machine such that job i is processed with a contiguous slot of
ti time units in the interval [ri, di] ?

Claim. SUBSET-SUM ! P SCHEDULE-RELEASE-TIMES.
Pf. Given an instance of SUBSET-SUM w1, …, wn, and target W,

! Create n jobs with processing time ti = wi, release time ri = 0, and no
deadline (di = 1 + "j wj).

! Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W+1.

W W+1 S+10

Can schedule jobs 1 to n anywhere but [W, W+1]

job 0

Algorithm Design by Éva Tardos and Jon Kleinberg • Copyright © 2005 Addison Wesley • Slides by Kevin Wayne

8.9 A Partial Taxonomy of Hard Problems

47

Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction

32 / 1

A little history of NP-completenes

In his original 1971 seminal paper, Cook was interested in theorem
proving. Stephen Cook won the Turing award in 1982

Cook used the general notion of polynomial time reducibility which is
called polynomial time Turing reducibility and sometimes called Cook
reducibility.

Cook established the NP completeness of 3SAT as well as a problem
that includes CLIQUE = {(G , k)|G has a k clique }.
Independently, in the (former) Soviet Union, Leonid Levin proved an
analogous result for SAT (and other problems) as a search problem.

Following Cook’s paper, Karp exhibited over 20 prominent problems
that were also NP-complete.

Karp showed that polynomial time transformations (sometimes called
polynomial many to one reductions or Karp reductions) were sufficient
to establish the NP completness of these problems.

33 / 1

Independent Set is NP complete

The independent set problem

Given a graph G = (V ,E) and an integer k.
Note that for every fixed k, there is a brute force |V |k time algorithm.

Is there a subset of vertices S ⊆ V such that |S | ≥ k, and for each
edge at most one of its endpoints is in S?

9

Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there
a subset of vertices S ! V such that |S| " k, and for each edge at
most one of its endpoints is in S?

Ex. Is there an independent set of size " 6? Yes.
Ex. Is there an independent set of size " 7? No.

independent set

10

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ! V such that |S| # k, and for each edge, at least
one of its endpoints is in S?

Ex. Is there a vertex cover of size # 4? Yes.
Ex. Is there a vertex cover of size # 3? No.

vertex cover

11

Vertex Cover and Independent Set

Claim. VERTEX-COVER $P INDEPENDENT-SET.
Pf. We show S is an independent set iff V % S is a vertex cover.

vertex cover

independent set

12

Vertex Cover and Independent Set

Claim. VERTEX-COVER $P INDEPENDENT-SET.
Pf. We show S is an independent set iff V % S is a vertex cover.

&

! Let S be any independent set.
! Consider an arbitrary edge (u, v).
! S independent & u ' S or v ' S & u (V % S or v (V % S.
! Thus, V % S covers (u, v).

)

! Let V % S be any vertex cover.
! Consider two nodes u (S and v (S.
! Observe that (u, v) ' E since V % S is a vertex cover.
! Thus, no two nodes in S are joined by an edge & S independent set. !

Question: Is there an independent set of size 6?

Yes.
Question: Is there an independent set of size 7? No.

34 / 1

Independent Set is NP complete

The independent set problem

Given a graph G = (V ,E) and an integer k.
Note that for every fixed k, there is a brute force |V |k time algorithm.

Is there a subset of vertices S ⊆ V such that |S | ≥ k, and for each
edge at most one of its endpoints is in S?

9

Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there
a subset of vertices S ! V such that |S| " k, and for each edge at
most one of its endpoints is in S?

Ex. Is there an independent set of size " 6? Yes.
Ex. Is there an independent set of size " 7? No.

independent set

10

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ! V such that |S| # k, and for each edge, at least
one of its endpoints is in S?

Ex. Is there a vertex cover of size # 4? Yes.
Ex. Is there a vertex cover of size # 3? No.

vertex cover

11

Vertex Cover and Independent Set

Claim. VERTEX-COVER $P INDEPENDENT-SET.
Pf. We show S is an independent set iff V % S is a vertex cover.

vertex cover

independent set

12

Vertex Cover and Independent Set

Claim. VERTEX-COVER $P INDEPENDENT-SET.
Pf. We show S is an independent set iff V % S is a vertex cover.

&

! Let S be any independent set.
! Consider an arbitrary edge (u, v).
! S independent & u ' S or v ' S & u (V % S or v (V % S.
! Thus, V % S covers (u, v).

)

! Let V % S be any vertex cover.
! Consider two nodes u (S and v (S.
! Observe that (u, v) ' E since V % S is a vertex cover.
! Thus, no two nodes in S are joined by an edge & S independent set. !

Question: Is there an independent set of size 6? Yes.

Question: Is there an independent set of size 7? No.

34 / 1

Independent Set is NP complete

The independent set problem

Given a graph G = (V ,E) and an integer k.
Note that for every fixed k, there is a brute force |V |k time algorithm.

Is there a subset of vertices S ⊆ V such that |S | ≥ k, and for each
edge at most one of its endpoints is in S?

9

Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there
a subset of vertices S ! V such that |S| " k, and for each edge at
most one of its endpoints is in S?

Ex. Is there an independent set of size " 6? Yes.
Ex. Is there an independent set of size " 7? No.

independent set

10

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ! V such that |S| # k, and for each edge, at least
one of its endpoints is in S?

Ex. Is there a vertex cover of size # 4? Yes.
Ex. Is there a vertex cover of size # 3? No.

vertex cover

11

Vertex Cover and Independent Set

Claim. VERTEX-COVER $P INDEPENDENT-SET.
Pf. We show S is an independent set iff V % S is a vertex cover.

vertex cover

independent set

12

Vertex Cover and Independent Set

Claim. VERTEX-COVER $P INDEPENDENT-SET.
Pf. We show S is an independent set iff V % S is a vertex cover.

&

! Let S be any independent set.
! Consider an arbitrary edge (u, v).
! S independent & u ' S or v ' S & u (V % S or v (V % S.
! Thus, V % S covers (u, v).

)

! Let V % S be any vertex cover.
! Consider two nodes u (S and v (S.
! Observe that (u, v) ' E since V % S is a vertex cover.
! Thus, no two nodes in S are joined by an edge & S independent set. !

Question: Is there an independent set of size 6? Yes.
Question: Is there an independent set of size 7?

No.

34 / 1

Independent Set is NP complete

The independent set problem

Given a graph G = (V ,E) and an integer k.
Note that for every fixed k, there is a brute force |V |k time algorithm.

Is there a subset of vertices S ⊆ V such that |S | ≥ k, and for each
edge at most one of its endpoints is in S?

9

Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there
a subset of vertices S ! V such that |S| " k, and for each edge at
most one of its endpoints is in S?

Ex. Is there an independent set of size " 6? Yes.
Ex. Is there an independent set of size " 7? No.

independent set

10

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ! V such that |S| # k, and for each edge, at least
one of its endpoints is in S?

Ex. Is there a vertex cover of size # 4? Yes.
Ex. Is there a vertex cover of size # 3? No.

vertex cover

11

Vertex Cover and Independent Set

Claim. VERTEX-COVER $P INDEPENDENT-SET.
Pf. We show S is an independent set iff V % S is a vertex cover.

vertex cover

independent set

12

Vertex Cover and Independent Set

Claim. VERTEX-COVER $P INDEPENDENT-SET.
Pf. We show S is an independent set iff V % S is a vertex cover.

&

! Let S be any independent set.
! Consider an arbitrary edge (u, v).
! S independent & u ' S or v ' S & u (V % S or v (V % S.
! Thus, V % S covers (u, v).

)

! Let V % S be any vertex cover.
! Consider two nodes u (S and v (S.
! Observe that (u, v) ' E since V % S is a vertex cover.
! Thus, no two nodes in S are joined by an edge & S independent set. !

Question: Is there an independent set of size 6? Yes.
Question: Is there an independent set of size 7? No.

34 / 1

3SAT reduces to Independent Set

Claim

3SAT ≤p Independent Set

Given an instance F of 3SAT with k clauses, we construct an instance
(G , k) of Independent Set that has an independent set of size k iff F
is satisfiable.
G contains 3 vertices for each clause; i.e. one for each literal.
Connect 3 literals in a clause in a triangle.
Connect literal to each of its negations.

17

Polynomial-Time Reduction

Basic strategies.
! Reduction by simple equivalence.
! Reduction from special case to general case.
! Reduction by encoding with gadgets.

18

Ex:

Yes: x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form: A propositional
formula ! that is the conjunction of clauses.

SAT: Given CNF formula !, does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Satisfiability

!

Cj = x
1
" x

2
" x

3

!

x
i
 or x

i

!

" = C
1
#C

2
C

3
C

4

!

x
1
" x

2
" x

3() # x
1
" x

2
" x

3() # x
2
" x

3() # x
1
" x

2
" x

3()

each corresponding to different variables

19

3 Satisfiability Reduces to Independent Set

Claim. 3-SAT " P INDEPENDENT-SET.
Pf. Given an instance ! of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff ! is
satisfiable.

Construction.
! G contains 3 vertices for each clause, one for each literal.
! Connect 3 literals in a clause in a triangle.
! Connect literal to each of its negations.

!

x
2

!

" = x
1
x

2
x

3() $ x
1
x

2
x

3() $ x
1
x

2
x

4()

!

x
3

!

x
1

!

x
1

!

x
2

!

x
4

!

x
1

!

x
2

!

x
3

k = 3

G

20

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size k = |!| iff ! is satisfiable.

Pf. # Let S be independent set of size k.
! S must contain exactly one vertex in each triangle.
! Set these literals to true.
! Truth assignment is consistent and all clauses are satisfied.

Pf $ Given satisfying assignment, select one true literal from each
triangle. This is an independent set of size k. !

!

x
2

!

x
3

!

x
1

!

x
1

!

x
2

!

x
4

!

x
1

!

x
2

!

x
3

k = 3

G

and any other variables in a consistent way

!

" = x
1
x

2
x

3() $ x
1
x

2
x

3() $ x
1
x

2
x

4()

35 / 1

Subset Sum

Subset Sum

Given a set of integers S = {w1,w2, . . . ,wn} and an integer W .

Is there a subset S ′ ⊆ S that adds up to exactly W ?

Example

Given S = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344} and
W = 3754.

Question: Do we have a solution?

Answer: Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

36 / 1

3SAT reduces to Subset Sum

Claim

3SAT ≤p Subset Sum

Given an instance F of 3SAT, we construct an instance of Subset
Sum that has solution iff F is satisfiable.

In the following array (next slide), rows represent integers represented
in decimal. For each propositional variable we have a column
specifying that each variable has just one truth assignment (i.e., true
= 1) and for each clause we have a column saying that the clause is
satisfiable. The “dummy rows” makes it possible to sum each column
to 4 if and only if there is at least one literal set to true. Note that
the decimal representation nsures that addition in each column will
not carry over to the next column.

37 / 1

3SAT reduces to Subset Sum continued

The figure illustrates how a specific 3CNF formula is transformed into a
set of integers and a target (bottow row).

38 / 1

Reviewing how to show some L is NP complete.

We must show L ∈ NP. To do so, we provide a polynomial time
verification predicate R(x , y) and polynomial length certificate y for
every x ∈ L; that is, L = {x |∃y ,R(x , y) and |y | ≤ q(|x |)}.

We must show that L is NP hard (say with respect to polynomial
time tranformations); that is, for some known NP complete L′, there
is a polynomial time transducer function h such that x ∈ L′ iff
h(x) ∈ L. This then establishes that L′ ≤p L.

Warning The reduction/transformation L′ ≤p L must be in the correct
direction and h must be defined for every input x ; that is, one must
also show that if x /∈ L′ then h(x) /∈ L as well as showing that if
x ∈ L′ then h(x) ∈ L.

39 / 1

