CSC373: Algorithm Design, Analysis and
Complexity
Fall 2017

Allan Borodin (in collaboration with Rabia Bakhteri and with
occasional guest lectures by Nisarg Shah and Denis Pankratov)

September 27, 2017

Week 3 : Annoucements and agenda

Assignment 1 was posted on Thursday, September 14 and is due
Thursday October 5 at 2PM.

Many questions on Piazza. We do not monitor everyday. Will try to
answer questions posed on Friday-Monday but most questions can be
answered in the lecture or the tutorials and often by fellow students.

Note: Rewording of question 4, part b Questions?

Todays unrealistic agenda

@ Some very quick remarks on formulating interval scheduling problems
as graph problems.

@ Some very quick concluding remarks on greedy algorithms

© Begin dynamic programming (DP). Getting to DP quickly so
assignment questions will be (more) understandable.

» The dynamic programming (DP) paradigm

The weighted interval selection problem

The knapsack problem

Shotest path prblems in directed graphs

The matrix chain problem

v vy VvYyy

Interval graphs: The interval selection and coloring
problems as graph problems

There is a natural way to view the interval scheduling and colouring
problems as graph problems.

Let 7 be a set of intervals. We can construct the intersection graph
G(Z) = (V,E) where
» V=T
» (u,v) is an edge in E iff the intervals corresponding to v and v
intersect.

Any graph that is the intersection graph of a set of intervals is called
an interval graph.

The interval selection (resp. interval coloring) problem can be viewed
as the maximum independent set problem (MIS) for the class of
interval graphs.

Intersection graphs are studied for many other geometric objects and
other types of objects.

3

Graph MIS and Colouring

@ Let G =(V,E) be a graph.

@ The following two problems are known to be “NP hard to
approximate” for arbitrary graphs:

Graph MIS

@ A subset U of V is an independent set (aka stable set) in G if for all
u,v € U, (u,v) is not an edge in E.

@ The maximum independent set (MIS) problem is to find a maximum
size independent set U.

Graph colouring

@ A function ¢ mapping vertices to {1,2,..., k} is a valid colouring of
G if c(u) is not equal to c(v) for all (u,v) € E.

@ The graph colouring problem is to find a valid colouring so as to
minimize the number of colours k.

Efficient algorithms for interval graphs

o Given a set Z of intervals, it is easy to construct its intersection graph
G(2).
Note: The following is a known interesting theorem

Given any graph G, there is a linear-time algorithm to decide if G is an
interval graph and if so to construct an interval representation.

@ The MIS (resp. colouring) problem for interval graphs is the MIS
(resp. colouring) problem for its intersection graph and hence these
problems are efficiently solved for interval graphs.

» Question: Is there a graph theoretic explanation?
» YES: interval graphs are chordal graphs having a perfect elimination
ordering.

@ The minimum colouring number (chromatic number) of a graph is
always at least the size of a maximum clique.

» The greedy interval colouring proof shows that for interval graphs

the chromatic number = max clique size.

Summarizing the greedy paradigm

@ Informally, (most) greedy algorithms consider one input item at a
time and make an irrevocable (“greedy”) decision about that item
before seeing more items.

@ To make this precise for any given problem we have to say
@ how input items are represented ; for example, what other information
could we put into the representation of an interval?
@ how an algorithm determines the order in which input items are
considered.

o Key to formalizing our intuitive idea off greedy algorithm: we need to
define the class of orderings of the input items that will be allowed.
We cannot allow any ordering of the input set or else one can say
take exponential time to compute an “optimal ordering”.

o If we try to make this precise by stating that the ordering must be
done in say time O(nlogn) (or even poly(n)) then we are in the
situation of trying to prove that something cannot be done in a given
time bound. The Turing tarpit p

One way to formalize how to order

@ For a given problem, assume that input items belong to some set 7.
@ For any execution of the algorithm, the input is a finite subset Z C J.

@ Let f: J — R be any function; that is, we do not place any
restriction on the complexity or even the computability of the
function.

@ Then for any actual input set Z = {/,..., I}, the function f induces
a total order on the input set (where we can break ties using the
index of the input items as given).

@ In a fixed order the function f is set initially. In an adaptive order,
there can be a different function f; in each iteration i with f;
depending on the items considered in iterations j < i.

Jeff Erickson’s comment on greedy algorithms

5.4 Warning: Greed is Stupid

If we’re very very very very lucky, we can bypass all the recurrences and tables and so forth, and solve the
problem using a greedy algorithm. The general greedy strategy is look for the best first step, take it, and
then continue. While this approach seems very natural, it almost never works; optimization problems
that can be solved correctly by a greedy algorithm are very rare. Nevertheless, for many problems that
should be solved by dynamic programming, many students’ first intuition is to apply a greedy strategy.

For example, a greedy algorithm for the edit distance problem might look for the longest common
substring of the two strings, match up those substrings (since those substitutions don’t cost anything),
and then recursively look for the edit distances between the left halves and right halves of the strings.
If there is no common substring—that is, if the two strings have no characters in common—the edit
distance is clearly the length of the larger string. If this sounds like a stupid hack to you, pat yourself on
the back. It isn’t even close to the correct solution.

Everyone should tattoo the following sentence on the back of their hands, right under all the rules
about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

What, never?

No, never!

What, never?

Well. . . hardly ever.®

My view of greedy algorithms

First, the previous comments are in the context of emphasizing DP
algorithms (our next paradigm) and were a deliberate overstating of
the point.

My view of greedy algorithms is that while they may not often be
optimal or as good as more sophisticated algorithms, there are many
cases where they work well either in terms of provable approximations
or “in practice”.

Moreover, in some cases we imediately need something that works
and knowing some basic approaches to a problem becomes a starting
point. If nothing esle, greedy algorithms can be a benchmark for
comparison against more sophisticated algorithms.

DP algorithms, once they are formulated, often seem quite apparant.
But coming up with a correct DP formulation is often not so obvious.
In contrast, coming up with a correct (albeit possibly one having poor
performance) greedy algorithm is usually easy to do.

Finally, there are applications (e.g. auctions) where conceptual
simplicity is a virtue in itself.

Dynamic programming - what’s in a name

| found this Bellman quote in Erickson's notes on dynamic programming.

Richard Bellman introduced this algorithmic technique during the Cold
War.

The 1950s were not good years for mathematical research. We had a very interesting
gentleman in Washington named Wilson. He was secretary of Defense, and he actually had a
pathological fear and hatred of the word ‘research’. I’'m not using the term lightly; I’'m using
it precisely. His face would suffuse, he would turn red, and he would get violent if people
used the term ‘research’ in his presence. You can imagine how he felt, then, about the term
‘mathematical’. The RAND Corporation was employed by the Air Force, and the Air Force had
Wilson as its boss, essentially. Hence, | felt | had to do something to shield Wilson and the Air
Force from the fact that | was really doing mathematics inside the RAND Corporation. What
title, what name, could | choose?

— Richard Bellman, on the origin of his term ‘dynamic programming’ (1984)

Figure: Richard Bellman quote on the naming of dynamic programming

10

What is dynamic programming?

Here is the wikipedia “definition”:

In computer science, mathematics, management science, economics and
bioinformatics, dynamic programming (also known as dynamic
optimization) is a method for solving a complex problem by breaking it
down into a collection of simpler subproblems, solving each of those
subproblems just once, and storing their solutions. The next time the same
subproblem occurs, instead of recomputing its solution, one simply looks
up the previously computed solution, thereby saving computation time at
the expense of a (hopefully) modest expenditure in storage space. (Each
of the subproblem solutions is indexed in some way, typically based on the
values of its input parameters, so as to facilitate its lookup.) The
technique of storing solutions to subproblems instead of recomputing them
is called " memoization™.

11

What is dynamic programming?

Here is the wikipedia “definition”:

In computer science, mathematics, management science, economics and
bioinformatics, dynamic programming (also known as dynamic
optimization) is a method for solving a complex problem by breaking it
down into a collection of simpler subproblems, solving each of those
subproblems just once, and storing their solutions. The next time the same
subproblem occurs, instead of recomputing its solution, one simply looks
up the previously computed solution, thereby saving computation time at
the expense of a (hopefully) modest expenditure in storage space. (Each
of the subproblem solutions is indexed in some way, typically based on the
values of its input parameters, so as to facilitate its lookup.) The
technique of storing solutions to subproblems instead of recomputing them
is called " memoization™.

What is the difference between divide and conquer and dynamic
programming?

11

Dynamic programming

@ Dynamic programming (DP) began as and remains a very general
algorithmic approach for solving optimization problems.

@ lts usage now goes beyond that but still optimization is the main use.

@ To begin to understand dynamic programming, we will start by
developing a DP algorithm for the weighted interval selection. Our
second example of the use of DP will be for the knapsack problem.

The weighted interval selection problem (WISP)

Goal: Find a non-intersecting set of intervals so as to maximize the sum
of interval weights (i.e., values) in the chosen set.

@ Can we use a greedy algorithm? (Recall Erickson's warning.)

12

Why not use greedy for WISP?

@ All the possible ways of ordering the input items that we can think of
will not only fail to be optimal but can produce arbitrarily bad
solutions for some instances.

@ Some possible orderings: by non increasing weight, by non increasing
weight/interval length.

@ Moreover, for a general greedy formalization it can be proven that no
greedy algorithm can provide a good solution (in the worst case).

@ There are some extensions to a greedy approach which do allow
constant approximations (i.e. by allowing revocable acceptances) and
even optimality (i.e. by a local ratio/primal dual algorithm that uses a
reverse delete phase).

13/1

The DP approach

@ Let’s consider an optimal solution and once again assume that the
intervals have been sorted by non-decreasing finishing time.

@ Then in an optimal solution OPT, either the last interval [, was
selected or it was not.
» If not, then we must be using an optimal solution for the first n — 1
intervals.

» If I, is in OPT then no interval in OPT after time s,,.

» Furthermore (and this is the essential aspect of DP), the intervals
ending by s, must be chosen optimally.

Note
@ Once again we will define the problem so that an interval can start
when another one ends.

@ We can easily modify things if we do not want to allow an interval to
start at precisely the time another ends.

14/1

The value/profit of an optimal solution

@ The previous observation leads us to compute the entries (for
i=1,...,n) in the following “semantic array”

V[i] = max profit obtainable by a set of intervals which are a subset
of the first i intervals {h, ..., [i} J

@ The optimal value then is V[n].
@ We can also define V[0] = 0.
@ To compute the entries of this array, it is helpful to define

pred(i) = the largest index j such that f; <'s; J

(If we don't allow a job to start where another ends
we would then have f; < s;.)

15/1

Recursively computing the V/[/]

e V[0]=0
o V'[i] = max{A, B} for i > 1, where
A= V'[i —1] and B = V'[pred(i)] + w;.

@ Here B (resp. A) corresponds to the case that the ith interval is used
(resp. not used) in the optimum solution for the first i intervals.

@ We can arbitrarily assume that we take the solution corresponding to
case A when A= B.

Claim
V[i]=V'[i] foralli=1,2,...,n. J

16/1

Iterative vs recursive implementation

@ We can clearly compute the entries of V'[i] iteratively for
i=0,1,...,n Time bound is O(nlog n) for sorting and for
computing pred][i] values.

@ What if we use a recursive program directly following the definition of
v’?
» Suppose for all i =1,2,...,n—1, interval I; overlaps l;;1 and no other
lj forj>i+1.
» This leads to the complexity recurrence

Tlnl=T[n—1]4 T[n-2]

whose solution (recall Fibonacci sequences) is exponential in n.

@ Memoization avoids this problem. In some sense, memoization is one
of the defining characteristics (say verses divide and conquer) of DP
algorithms.

17

Why two arrays V and V’'?

@ The semantic array is defined to say what we are trying to compute.

@ The recursively defined computational array is essentially a high level
code for how to compute the entries of the semantic array.

@ The creative aspect of DP is coming up with an appropriate semantic
array that has to provide us with enough information to obtain the
desired result as well as being easy to compute.

@ And although it often seems tedious, we need a proof that V = V/.

@ In fact, we should have been doing the same testing of equality for
divide and conquer algorithms.

18

Computing an optimal solution and not just the
optimal value

@ So far we only computed the value of an optimal solution (for WISP)
but we can easily adapt the DP solution to compute the solution as
well.

@ While there are somewhat more efficient ways to do this, the
conceptually simplest thing to do is to maintain an array, say S, where
S[i] contains the partial solution corresponding to the value V[i].

@ It should be clear from the recursion defining V/ how to do this.

10/ ifi=0
Sl =<} S'i —1] if V/[i]=V'[i —1]
S'|pred(i)] U {i} otherwise.

19/1

Characteristics of dynamic programming

DP algorithms exploit the optimal substructure property of the problem
being solved. That is, an optimal solution contains within it, optimal
solutions to subproblems.

As you will have seen, the wikipedia page (and other explanations of
dynamic programming) emphasize memoization as a defining
characteristic. And it is this aspect of reusing subproblems that
distingusihes DP from divide and conquer. In fact, as one now thinks
about our divide and conquer examples, the recursive subproblems are all
disjoint and hence memoization is not needed.

Bellman argues against trying to formalize the meaning of dynamic
programming stating that although solme solutions “are forced upon us
....experience alone, combined with often laborious trial and error, will
yield suitable formulations of involved processes”.

So lets consider more examples. But first a comment about efficient
implementation.

A comment on efficient implementations of DP

Dai Tri Man Le makes the following observation on implementing a DP
algorithm:

One problem with using DP in practice is the memory issue.
When the program uses too much memory, it's no longer fast.
That's why sometimes one uses recursion instead of DP,
although the worst cases can be terrible. Recently | was able to
improve some worst case of an algorithm used in industry from
24 hours to 5 mins using memoization. | didn’t even need to
memorize everything, just the most recently computed results,
and it's already sufficient to see the improvement. It’s also
interesting that when | didn’t restrict the size of the look up
(hash) table as much so that it can memoize more things, the
algorithm became slower. So a lot of tuning was needed for the
code to perform well.

As stated in the first week, this course is not concerned with
implementation issues, as important as they are.

The Knapsack problem

In the knapsack problem we are given a set of nitems /1,...,/, and a
size bound B where where each item /; = (sj, v;) with s; being the
size of the item and v; the value.

A feasible set is now a subset of items S such that the sum of the
sizes of items in S is at most the bound B.

Goal: Find a feasible set S that maximizes the sum of the values of
items in S.

Often (e.g., KT and CLRS texts) one uses w; for the "weight"
(meaning size in my terminology) of the item rather than s; but | am
avoiding that due to our earlier use of w; to denote the weight or
profit of an interval in the WISP.

In general we can allow real valued parameters but in some algorithms
need to restrict attention to integral parameters. But by scaling
inputs this is not a significant restriction.

This is known to be an NP hard problem but as we shall see it is only
“weakly NP hard”. It remains an NP hard problem even when v; = s;
for all j.

22

A first attempt

@ Here is a plausible DP approach. Lets assume all sizes are integral.
Suppose we consider an optimal solution and consider the last item

placed in the knapsack.

@ Then after placing that item in the knapsack (say having weight s),
we have reduced the available space to B — s.

@ So it seems that we need to have a semantic array

V[b] = max profit/value obtainable within size bound b for 0 < b < B.)

@ The recursive array

y 0 for b <0
V[= o
max;{V'[b—s()] + v(j):j=1,2,...,n} forb>0

@ Does this work and if not why not?

A correct approach
@ The previous approach did not work because it allows using an item
more than once.
@ Instead we can use

V[i, b] = the maximum profit possible using only the first i items
and not exceeding the bound b.

@ The corresponding computational array is :
VI[i b = 0 ?fizOorsz
max{C,D} ifs;<b

where
C=V/[i-1,bland D= V'[i —1,b—s]+ v;.

@ This algorithm has running time O(nB) and is pseudo polynomial
time. Why is it not polynomial time?

A second DP algorithm for the knapsack problem

@ In the first algorithm, if the sizes (or the bound B) are small (i.e.
B = poly(n)) then the algorithm runs in polynomial time.

@ What if the values {v;} are integral and small?

@ Consider the following semantic array

minimum size required to obtain at least profit v using
Wli, v] = a subset of the items {/1,..., /;} if possible

oo otherwise

@ The desired optimum value is max{v : W|[n, v] is at most B}.

Corresponding computational array

@ The corresponding computational array is :

00 ifi=0and v>0
W[i,v] = {0 if i <0and v <0
min{C, D} otherwise.

where
C=W[i—1,vl]and D= WI[i—1,v—vj]+s;.

@ This DP remains pseudo polynomial time but now the complexity is
O(nV) where V=vi +va+ ...+ vp.

26

An FPTAS for the knapsack problem

@ This algorithm can be used as the basis for an efficient approximation
algorithm for all input instances.

@ The basic idea is relatively simple:

>

The high order bits/digits of the values can determine an approximate
solution (disregarding low order bits after rounding up).

The fewer high order bits we use, the faster the algorithm but the
worse the approximation.

The goal is to scale the values in terms of a parameter € so that a

(1 + €) approximation is obtained with time complexity polynomial in n
and (1/¢).

The details are given in the DPV text (section 9.2.4) or the KT text
(section 11.8).

Namely, KT set U; = [;-] where vmax = max;{v;}. DPV use the
floor | |.

The running time is O(n3/e).

Looking ahead toward discussion of NP complete
problems

@ In term of computing optimal solutions, all “NP complete
optimization problems” (i.e. optimization problems corresponding to
NP complete decision problems) can be viewed (up to polynomial
time) as a single class of problems.

@ But in the world of approximation algorithms, this single class splits
into many classes of approximation guarantees. Up to our believed
complexity assumptions, we next discuss these possibilities.

Definition

© An FPTAS (Fully Polynomial Time Approximation Scheme) algorithm is one
that is polynomial time in the encoding of the input and %

@ A PTAS (Polynomial Time Approximation Scheme) algorithm is one that
that is polynomial in the encoding of the algorithm but can have any
complexity in terms of %

Different approximation possibilities for NP
complete optimization

Given widely believed complexity claims

O An FPTAS
e.g. the knapsack problem
© A PTAS but no FPTAS

e.g. makespan (when the number of machines m is not fixed but rather
is a parameter of the problem.

© Having a constant ¢ > 1 approximation but no PTAS
e.g. JISP

© An O(log n) approximation and no constant approximation
e.g. set cover H, essentially tight.

@ No n'—¢ approximation for any € > 0
e.g. graph colouring and MIS for arbitrary graphs

Here n stands for some input size parameter (e.g. size of the universe for set
cover and number of nodes in the graph for colouring and MIS).
29

A DP with a sightly different style

@ Let’s consider the single source least cost paths problem which is
efficiently solved by Dijkstra's greedy algorithm for graphs in which all
edge costs are non-negative.

@ The least cost paths problem is still well defined as long as there are
no negative cycles; that is, the least cost path is a simple path.

@ The KT text presents the Bellman-Ford algorithm in Chapter 6. *the
edges as the input items. But still | think the DP point of view is
what *leads us to this algorithm.

30

Single source least cost paths for graphs with no
negative cycles

@ Following the DP paradigm, we consider the nature of an optimal
solution and how it is composed of optimal solutions to
“subproblems”.

@ Consider an optimal simple path P from source s to some node v.

» This path could be just an edge.

» But if the path P has length greater than 1, then there is some node u
which immediately proceeds v in P. If P is an optimal path to v, then
the path leading to u must also be an optimal path.

P
CINAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV. 014

31/1

Single source least cost paths for graphs with no
negative cycles

@ This leads to the following semantic array:

Cli, v] = the minimum cost of a simple path with path length at most /
from source s to v. (If there is no such path then this cost is c0.)

@ The desired answer is then the single dimensional array derived by
setting i = n — 1. (Any simple path has path length at most n — 1.)

32/1

How to construct the computational array?

@ We can construct C'[i,v] from C'[i —1,...] as follows:

C'li—1,v]

C'li—1,u]

@ Let C'[i,v] be the minimum value among
» C'[i—1,v]
» C'[i —1,u] + c(u, v) for all (u,v) € E.

33

Corresponding computational array

@ The computational array is defined as:

0 ifi=0andv=s
C'li,v] = ¢ ifi=0and v#s
min{A, B} otherwise
A=C[i—1,v]

B = min{C’[i— 1Lu]l + c(u,v) : (u,v) € E}

@ Why is this slightly different from before?

» Namely, showing the equivalence between the semantic and
computationally defined arrays is not an induction on the indices of the

input items in the solution.
» But it is based on some other parameter (i.e. the path length) of the

solution.
@ Time complexity: n® entries x O(n) per entry = O(n?) in total.

34

Computing maximum cost path using the same DP?

@ To define this problem properly we want to say “maximum cost
simple path” since cycles will add to the cost of a path.

@ (For least cost we did not have to specify that the path is simple once
we assumed no negative cycles.)

@ Suppose we just replace min by max in the least cost DP. Namely,

M[i, v] = the maximum cost of a simple path with path length at most /
from
source s to v. (If there is no such path then this cost is —0c0.)

35/1

The corresponding computational array

@ The corresponding computational array would be

0 ifi=0andv=s
M'[i,v] =< —o0 ifi=0andv#s
max{A, B} otherwise
A=M[i—1,v]

B = max{l\/l’[i —Lu]+c(u,v):(u,v) e E}

@ |s this correct?

36

What goes wrong?

@ The problem calls for a maximum simple path but the recursion
B= max{l\/l/[i — 1 u)+ c(u,v): (u,v) € E}

does not guarantee that the path through v will be a simple path as v
might occur in the path to u. Algorithm would work for a DAG.

@ In fact, determining the maximum cost of a simple path is NP-hard.
> A special case of this problem is the Hamiltonian path problem: does a
graph G = (V/, E) have a simple path of length |V| — 17
» The Hamiltonian path problem is a variant of the “notorious”
(NP-hard) traveling salesman problem (TSP).

@ See Section 6.6 of DPV for how to use DP to reduce the complexity
from the naive O(n!) to O(n?2").

Stirling’s approximation

n! ~2mn (g)n J

37/1

The all pairs least cost problem

@ We now wish to compute the least cost path for all pairs (u, v) in an
edge weighted directed graph (with no negative cycles).

@ We can repeat the single source DP for each possible source node:
complexity O(n*)

@ We can reduce the complexity to O(n3logn) using the DP based on
the semantic array

E[j, u, v] = cost of shortest path of path length at most 2/ from u to v. J

@ What is corresponding computational array?

38/1

Another DP for all pairs (DPV section 6.6)

@ Let's assume (without loss of generality) that V = {1,2,...,n}.
@ We now define the semantic array

Gk, u,v] = the least cost of a (simple) path 7 from u to v such that the
internal nodes in the path 7 are in the subset {1,2,..., k}. J

@ The computational array is

0 ifu=v
G'[0,u,v] =< c(u,v) if (u,v) is an edge
o0 otherwise.

G'[k + 1, u,v] = min{A, B}

where A= G'[k,u,v] and B = G'[k,u, k + 1] + G'[k, k + 1, v].
@ Like the recursion for the previous array E’[j, u, v], the recursion here
uses two recursive calls for each entry.

@ Time complexity: n3 entries x O(1) per entry = O(n?) in total.

39/1

A similar DP (using 2 recursive calls)

The chain matrix product problem (DPV section 6.5)

@ We are given n matrices (say over some field) My, ..., M, with M;
having dimension d;_1 X d;.
@ Goal: compute the matrix product

My-Mp-...- M,

using a given subroutine for computing a single matrix product A - B.

v

@ We recall that matrix multiplication is associative; that is,
(A-B)-C=A-(B- Q).

@ But the number of operations for computing A- B - C generally
depends on the order in which the pairwise multiplications are carried
out.

40/1

The matrix chain product problem continued

@ Let us assume that we are using classical matrix multiplication and
say that the scalar complexity for a (p x q) times (g X r) matrix
multilication is pgr.

@ For example say the dimensions of A, B and C are (respectively)
5 x 10, 10 x 100 and 100 x 50.

@ Then using (A- B) - C costs 5000 + 25000 = 30000 scalar operations
whereas A - (B - C) costs 50000 + 2500 = 52500 scalar ops.

@ Note: For this problem the input is these dimensions and not the
actual matrix entries.

41

Parse tree for the product chain

@ The matrix product problem then is to determine the parse tree that
describes the order of pairwise products.

@ At the leaves of this parse tree are the individual matrices and each
internal node represents a pairwise matrix multiplication.

@ Once we think of this parse tree, the DP is reasonably suggestive:

The root of the optimal tree is the last pairwise multiplication and the
subtrees are subproblems that must must be computed optimally.

42/1

The DP array for the matrix chain product problem

@ The semantic array:

Cli, j] = the cost of an optimal parse of M;-...- M;for 1 < i <j<n. J

@ The recursive computationally array:

.
c'lig] = {0 =)

min{C'[i, k] + C'[k +1,j] + di_1dkdj : i < k <j} ifi<j
@ This same style DP algorithm (called DP over intervals) is also used

in the RNA folding problem (in Section 6.5 of KT) as well as in
computing optimal binary search trees (see section 15.5 in CLRS).

@ Essentially in all these cases we are computing an optimal parse tree.

43/1

The sequence alignment (edit distance) problem

The edit distance problem

@ Given two strings X = x3x2...xn and Y = yj1y» ...y, over some
finite alphabet S.

@ Goal: find the best way to “match” these two strings.

@ Variants of this problem occur often in bio-informatics as well as in
spell checking.

@ Sometimes this is cast as a maximization problem.

@ We will view it as a minimization problem by defining different
distance measures and matching symbols so as to minimize this
distance.

44

A simple distance measure

@ Suppose we can delete symbols and match symbols.

@ We can have a cost d(a) to delete a symbol ain S, and a cost
m(a, b) to match symbol a with symbol b (where we would normally
assume m(a, a) = 0).

@ As in any DP we consider an optimal solution and let’s consider
whether or not we will match the rightmost symbols of X and Y or
delete a symbol.

45

The DP arrays

@ The semantic array:

E[i,j] = the cost of an optimal match of x;...x; and y;...y;.

@ The computational array:

0 ifi=j=0
d(y;)+E'li,j—1] ifi=0and;>0
d(x;)+E'li—1,j] ifi>0andj=0
min{A, B, C} otherwise

E/[ivj] =

where A = m(x;.,yj) + E'[i —1,j — 1], B=d(x;) + E'[i — 1,], and
C=d(y)+E'li,j—1].
@ As a simple variation of edit distance we consider the maximization problem where

each “match” of “compatible” a and b has profit 1 (resp. v(a, b)) and all
deletions and mismatches have 0 profit.

@ This is a special case of unweighted (resp. weighted) bipartite graph matching
where edges cannot cross.

46

DP concluding remarks

@ In DP algorithms one usually has to first generalize the problem (as

we did more or less to some extent for all problems considered).
Sometimes this generalization is not at all obvious.

@ What is the difference between divide and conquer and DP?

In divide and conquer the recursion tree never encounters a subproblem
more than once.

In DP, we need memoization (or an iterative implementation) as a given
subproblem can be encountered many times leading to exponential time
complexity if done without memoization.

See also the comment on page 169 of DPV as to why in some cases
memoization pays off since we do not necessaily have to compute every
possible subproblem. (Recall also the comment by Dai Tri Man Le.)

47

	Week 3

