
CSC373: Algorithm Design, Analysis and
Complexity
Fall 2017

Allan Borodin

Dcember 6, 2017

1 / 1

Week 12 : Announcements and todays agenda

Assignment 3 was due Monday, December 4 at 10:00 AM.
We will go over solutions today.

We will try to grade this as soon as possible but probably not in time
for final exam. Most likely A2 grading will be finished this week.

Todays agenda
1 Discuss term test 2
2 Discuss Assignment 3
3 Discuss final exam
4 Brief discussion of topics not often in an undergraduate course:

F Random walk algorithms for Max-Sat; fine-grained complexity
F Online algorithms; bipartite matching variants relating to online

advertising
F A randomized algorithm for primality testing

5 Brief discussion of topics not usually included in an undergraduate
course:

F Fixed parameter tractable hard problems
F Sublinear time algorithms
F Streaming algorithms

2 / 1

What is the complexity of k-SAT?

It is not difficult to show that 2-SAT (i.e., determining if a 2CNF
formula is satisfiable) is efficiently deterministically solvable in
polynomial time. This is in contrast to 3-SAT being NP complete.

However, it turns out that Max-2-SAT is NP-hard.

We will see that for 2-SAT there is also a conceptually simple 1-sided
error randomized algorithm (based on random walks) running in time
O(n2) that shows that 2-SAT is computationally easy.

The same basic random walk approach can be used to derive a
randomized 1-sided error algorithm (which in turn has a deterministic
variant) for 3-SAT that runs in time (1.324)n. This is, of course, still
exponential but significantly better that 2n.

The exponential time hypothesis (ETH): There is no deterministic
or randomized algorithm for 3-SAT running in time 2o(n). This is an
unproven conjecture even assuming P 6= NP.

3 / 1

Random walk algorithms for 2-Sat and k-Sat

First, here is the idea of the deterministic polynomial time algorithm
for 2-Sat: We can first eliminate all unit clauses. We then reduce the
problem to the directed s − t path problem. We view each clause
(x ∨ y) in F as two directed edges (x̄ , y) and (ȳ , x) in a graph GF

whose nodes are all possible literals x and x̄ . Then the formula is
satisfiable iff there does not exist a variable x such that there are
paths from x to x̄ and from x̄ to x in GF .

There is also a randomized algorithm for 2-SAT (due to
Papadimitriou [1991]) based on a random walk on the line graph with
nodes {0, 1, , n}. We view being on node i as having a truth
assignment τ that is Hamming distance i from some fixed satisfying
assignment τ∗ if such an assignment exists (i.e. F is satisfiable).

Start with an arbitrary truth assignment τ and if F (τ) is true then we
are done; else find an arbitrary unsatisfied clause C and randomly
choose one of the two variables xi occurring in C and now change τ
to τ ′ by setting τ ′(xi) = 1− τ(xi).

4 / 1

The expected time to reach a satisfying assignment

When we randomly select one the the two literals in C and
complement it, we are getting close to τ∗ (i.e. moving one edge
closer to node 0 on the line) with probability at least 1

2 . (If it turns
out that both literal values disagree with τ∗, then we are getting
closer to τ∗ with probability = 1.)
As we are proceeding in this random walk we might encounter
another satisfying assignment which is all the better.
It remains to bound the expected time to reach node 0 in a random
walk on the line where on each random step, the distance to node 0 is
reduced by 1 with probability at least 1

2 and otherwise increased by 1
(but never exceeding distance n). This perhaps biased random walk is
at least as good as the case where we randomly increase or decrease
the distance by 1 with probability equal to 1

2 .

Claim:

The expected time to hit node 0 is at most 2n2.

To prove the claim one needs some basic facts about Markov chains.5 / 1

The basics of finite Markov chains

A finite Markov chain M is a discrete-time random process defined
over a set of states S and a matrix P = {Pij} of transition
probabilities.

Denote by Xt the state of the Markov chain at time t. It is a
memoryless process in that the future behavior of a Markov chain
depends only on its current state: Prob[Xt+1 = j |Xt = i] = Pij and
hence Prob[Xt+1 = j] =

∑
i Prob[Xt+1 = j |Xt = i]Prob[Xt = i].

Given an initial state i , denote by r tij the probability that the first time
the process reaches state j starting from state i occurs at time t;
r tij = Pr [Xt = j and Xs 6= j for 1 ≤ s ≤ t − 1|X0 = i]

Let fij the probability that state j is reachable from initial state i ;
fij =

∑
t>0 r

t
ij .

Denote by hij the expected number of steps to reach state j starting
from state i (hitting time); that is, hij =

∑
t>0 t · r tij

Finally, the commute time cij is the expected number of steps to reach
state j starting from state i , and then return to i from j ; cij = hij + hji

6 / 1

Stationary distributions

Define qt = (qt1, q
t
2, . . . , q

t
n), the state probability vector (the

distribution of the chain at time t), as the row vector whose i-th
component is the probability that the Markov chain is in state i at
time t.
A distribution π is a stationary distribution for a Markov chain with
transition matrix P if π = πP.
Define the underlying directed graph of a Markov chain as follows:
each vertex in the graph corresponds to a state of the Markov chain
and there is a directed edge from vertex i to vertex j iff Pij > 0. A
Markov chain is irreducible if its underlying graph consists of a single
strongly connected component. We end these preliminary concepts by
the following theorem.

Theorem: Existence of a stationary distribution

For any finite, irreducible and aperiodic Markov chain,

(i) There exists a unique stationary distribution π.

(ii) For all states i , hii <∞, and hii = 1/πi . 7 / 1

Back to random walks on graphs

Let G = (V ,E) be a connected, non-bipartite, undirected graph with
|V | = n and |E | = m. A uniform random walk on G induces a Markov
chain MG as follows: the states of MG are the vertices of G ; and for
any u, v ∈ V , Puv = 1/deg(u) if (u, v) ∈ E , and Puv = 0 otherwise.
Denote by (d1, d2, . . . , dn) the vertex degrees. MG has a stationary
distribution (d1/2m, . . . , dn/2m).
Let Cu(G) be the expected time to visit every vertex, starting from u
and define C (G) = maxu Cu(G) to be the cover time of G .

Theorem: Aleliunas et al [1979]

Let G be a connected undirected graph. Then

1 For each edge (u, v), Cu,v ≤ 2m,

2 C (G) ≤ 2m(n − 1).

It follows that the 2-SAT random walk has expected time at most 2n2

to find a satisfying assignment in a satisfiable formula. Use Markov
inequality to obtain probability of not finding a satisfying assignment.

8 / 1

Extending the random walk idea to k-SAT

The random walk 2-Sat algorithm might be viewed as a drunken walk
(and not an algorithmic paradigm). Or we could view the approach as
a local search algorithm that doesn’t know when it is making progress
on any iteration but does have confidence that such an exploration of
the local neighborhood is likely to be successful over time.

We want to extend the 2-Sat algorithm to k-SAT. However, we know
that k-SAT is NP-complete for k ≥ 3 so our goal now is to improve
upon the naive running time of 2n, for formulas with n variables.

In 1999, Following some earlier results, Schöning gave a very simple
(a good thing) random walk algorithm for k-Sat that provides a
substantial improvement in the running time (over the naive 2n

exhaustive search) and this is still almost the fastest (worst case)
algorithm known.

This algorithm was derandomized by Moser and Scheder [2011].

Beyond the theoretical significance of the result, this is the basis for
various Walk-Sat algorithms that are used in practice.

9 / 1

Schöning’s k-SAT algorithm

The algorithm is similar to the 2-Sat algorithm with the difference being
that one does not allow the random walk to go on too long before trying
another random starting assignment. The result is a one-sided error alg
running in time Õ[(2(1− /1k)]n; i.e. Õ(43)n for 3-SAT, etc.

Randomized k-SAT algorithm

Choose a random assignment τ
Repeat 3n times % n = number of variables
If τ satisfies F then stop and accept
Else Let C be an arbitrary unsatisfied clause

Randomly pick and flip one of the literals in C
End If

Claim

If F is satisfiable then the above succeeds with probability p at least
[(1/2)(k/k − 1)]n. It follows that if we repeat the above process for t
trials, then the probability that we fail to find a satisfying assignment is at
most (1− p)t < e−pt . Setting t = c/p, we obtain error probability (1e)c .10 / 1

A final comment on the complexity status of k SAT

The random walk time bound bound Õ[(2(1− /1k)]n can be stated as
O((ck)n) where ck → 2 as k →∞.

Strong exponential time hypothesis (SETH): There is no deterministic
or randomized algorithm for SAT that runs in time cn for any c < 2.

Perhaps surprisingly, the ETH and especially the SETH conjectures imply
that for a number of polynomial time computable problems, rather simple
algorithms provide approximately the best time bounds. This important
observation led to a topic called fine-grained complexity.

For example, consider the following orthogonal vectors (OV) problem:
Given a set S of n vectors over {0, 1}d with d = ω(logn) (say
d = d(log2 n)2)e. Determine if S has a pair of orthogonal vectors.

R. Williams [2005] : SETH implies there is no 0-sided randomized
algorithm for the OV problem having expected time n2−ε for any ε > 0.
This in turn (using “fine-grained reductions”) implies that the edit
distance problem cannot be computed in time n2−ε.

11 / 1

The fine-grained landscape

Some structure within P

Orthog.
vectors

3SUM APSP

Sparse graph diameter [RV’13], local alignment,
longest common substring* [AVW’14], Frechet

distance [Br’14], Edit distance [BI’15], LCS
[ABV’15, BrK’15]…

N2- H

N2- H’

In dense graphs:
radius, median,
betweenness

[AGV’15], negative
triangle, second

shortest path,
shortest cycle …

[VW’10], …

N1.5-H

n3- H

N1.5- H’ n3- H

Huge literature in comp.
geom. [GO’95, BH-P98, …]:

Geombase, 3PointsLine,
3LinesPoint, Polygonal

Containment …

String problems: Sequence
local alignment [AVW’14],

jumbled indexing [ACLL’14]

N2- H

N2- H’

STUCK
on all 3!

k-SAT
2(1 - G)n

[W’04]

Dynamic
problems

[P’10],[AV’14],
[HKNS‘15],

[RZ’04]

Figure: From V. Williams 2015 12 / 1

The all pairs shorest paths (APSP) problems

We considered the APSP problem early in the term. Even after (or
because of) a number of relatively small improvements we still have the
APSP conjecture.

APSP: given a weighted graph, find the distance
between every two nodes.

Author Runtime Year

Fredman n3 log log1/3 n / log1/3 n 1976

Takaoka n3 log log1/2 n / log1/2 n 1992

Dobosiewicz n3 / log1/2 n 1992

Han n3 log log5/7 n / log5/7 n 2004

Takaoka n3 log log2 n / log n 2004

Zwick n3 log log1/2 n / log n 2004

Chan n3 / log n 2005

Han n3 log log5/4 n / log5/4 n 2006

Chan n3 log log3 n / log2 n 2007

Han, Takaoka n3 log log n / log2 n 2012

Williams n3 / exp(� log n) 2014

Classical problem
Long history

APSP Conjecture:
APSP on n nodes
and O(log n) bit
weights requires

n3-o(1) time.

13 / 1

Online algorithms

We have already briefly mentioned online algorithms in the context of the
makespan problem (e.g. Graham’s identical machines online greedy
algorithm) and Max-Sat (e.g. the naive algorithm and Johnson’s
algorithm).

These are two NP-hard problems which are usually not thought of as
online problems where the inputs are arriving one item at a time and
decisions (usually irrevocable) have to be made without knowledge of
future inputs.

Note: In the scheduling lterature, the term “online algorithm” often refers
to a related concept that I would call “real time algorithms”.

However, there could be applications where they become online problems.

There are many problems which are naturally or even inherently thought of
as online problems, such as paging and list accessing.

14 / 1

Online algorithms as a subfield of approximation
algorithms

In 1985, Sleator and Tarjan published an influential paper arguing for a
worst case analysis (in contrast to many previous stochastic analyses) for
the list accessing and paging problems. In particular they argued that the
move to front algorithm for list accessing not only works well theoretically
(wrt worst case analysis) but also performed better “in pratcice”.

NOTE: We again caution that algorithm design is a more complex
matter when it comes to theory vs practice.

In principle one could design an analytical model that would predict
performance for various applications, but generally speaking this is an “art
form” and not well understood. There are ongoing attempts to understand
conditions on real world instance so as to understand why certain
theoretical algorithms do have good (or even optimal) performanice.

Returning to online algorithms, there is a renwed interest given
applications such a online auctions (e.g. for advertising slots).

15 / 1

Online algorithms as a subfield of approximation
algorithms

In 1985, Sleator and Tarjan published an influential paper arguing for a
worst case analysis (in contrast to many previous stochastic analyses) for
the list accessing and paging problems. In particular they argued that the
move to front algorithm for list accessing not only works well theoretically
(wrt worst case analysis) but also performed better “in pratcice”.

NOTE: We again caution that algorithm design is a more complex
matter when it comes to theory vs practice.

In principle one could design an analytical model that would predict
performance for various applications, but generally speaking this is an “art
form” and not well understood. There are ongoing attempts to understand
conditions on real world instance so as to understand why certain
theoretical algorithms do have good (or even optimal) performanice.

Returning to online algorithms, there is a renwed interest given
applications such a online auctions (e.g. for advertising slots).

15 / 1

Online bipartite matching

The underlying combinatorial problem in online auctions for advertising is
some form of (weighted) bipartite matching. Here, we can think of
keywords or queries arrivving online and advertisers having edges to
keywords/queries for which they want to post an advertisement.

Even the unweighted online bipartite matching problem is an interesting
problem. In this problem, we have a bipartite graph G with nodes U ∪ V .
Nodes in U enter online revealing all their edges. A deterministic greedy
matching produces a maximal matching and hence a 1

2 approximation.
Can we do better?

It is easy to see that (in worst case analysis) any deterministic online
algorithm cannot be better than a 1

2 approximation even when the degree
of every u ∈ U is at most (equal) 2

A nice sequence of results begins with a randomized online algorithm for
bipartite matching due to Karp, Vazirani and Vazirani [1990].

16 / 1

Online bipartite matching

The underlying combinatorial problem in online auctions for advertising is
some form of (weighted) bipartite matching. Here, we can think of
keywords or queries arrivving online and advertisers having edges to
keywords/queries for which they want to post an advertisement.

Even the unweighted online bipartite matching problem is an interesting
problem. In this problem, we have a bipartite graph G with nodes U ∪ V .
Nodes in U enter online revealing all their edges. A deterministic greedy
matching produces a maximal matching and hence a 1

2 approximation.
Can we do better?

It is easy to see that (in worst case analysis) any deterministic online
algorithm cannot be better than a 1

2 approximation even when the degree
of every u ∈ U is at most (equal) 2

A nice sequence of results begins with a randomized online algorithm for
bipartite matching due to Karp, Vazirani and Vazirani [1990].

16 / 1

The randomized ranking algorithm

The algorithm chooses a random permutation of the nodes in V and
then when a node u ∈ U appears, it matches u to the highest ranked
unmatched v ∈ V such that (u, v) is an edge (if such a v exists).

Aside: making a random choice for each u is still only a 1
2 approx.

Equivalently, this algorithm can be viewed as a deterministic greedy
(i.e. always matching when possible and breaking ties consistently)
algorithm in the ROM model.

That is, let {v1, . . . , vn} be any fixed ordering of the vertices and let
the nodes in U enter randomly, then match each u to the first
unmatched v ∈ V according to the fixed order.

To argue this, consider fixed orderings of U and V ; the claim is that
the matching will be the same whether U or V is entering online.

17 / 1

Ramdomized compositeness testing

One of the most influential randomized algorithms is a polynomial time
algorithm for determining if a number is prime or composite.

Quick modern history of primality testing

Indpenedently, Solovay and Strassen, and Rabin [1974] gave two
different randomized polynomial time, 1-sided algorithms for
determining if an n digit number N is composite or prime.

More precisely, the algorithm always output PRIME if N is prime and
outputs COMPOSITE with probability at least 1

2 if N is composite.
That is, the deciding if a number is composite is in the class RP.

The error probability can be reduced by repeated independent trials;
that is t trials would then yield an error (i.e. saying N is prime when
it is composite) of at most 1

2t so that “in practice one can be quite
confidant” to say that N is prime.

18 / 1

Primality history continued

The Rabin algorithm is related to a deterministic polynomial time
algorithm by Miller [1976] whose correctness requires the Extended
Riemann Hypothesis (ERH), a famous well-believed conjecture in
number theory.

Goldwasser and Kilian [1986] gave a polynomial time 0-zero error
algorithm. This then guarantess primality but is only polynomial time
in expectation.

Agrawal, Kayal and Saxena [2002] gave a determinstic polynomial
time algorithm.

19 / 1

So why concern ourselves with a randomized
algorithm when there is a deterministic algorithm?

There are polynomials and there are much better polynomials.

The deterministic (or 0-sided) algorithms are not nearly as practical
as the 1-sided algorithms.

These relatively fast algorithms are an essential ingrediant in many
cryptographic protocols where large random primes are needed.

Note that while primality/compositness testing is theoretically and
practically solvable, factoring integers is believed to be difficult and
conjectured to require exponential time (e.g. say 2n

1/3
) in some

“average sense”.
Note: Integer factoring is not believed to be NP-hard. A decision
version of the factioring problem is in NP.

Complexity based cryptography often depends on the “average case”
difficulty of problems such a integer factoring.

20 / 1

Some basic group theory and number theory

Z ∗N = {a ∈ Zn gcd(a,N) = 1} is a commutative group under
mulitplication (mod N).

Lagrange Theorem: If H is a subbgroup of G then order(H) divides
order(G).

Fremat’s Little Theorem: If N is prime then for
a 6= 0(mod N), aN−1 = 1(modN).

Furthermore, if N is prime, then Z ∗N is a cyclic group; that is,
∃g : {g , g2, . . . , gN−1}(mod N) = Z ∗N . This implies that for such a
generator g , g i 6= 1 for 1 ≤ i ≤ N − 2.

If N is prime, then +1 and −1 are the only square roots of 1.

The Chinese Remainder Theorem: If N1 and N2 are relatively prime,
then for all v1, v2, there exists a unique non-negative w < N1 · N2

such that w = v1(mod N1) and w = v2(mod N2.

21 / 1

A simple but not quite correct algorithm

We need two computational facts:

1 ai (mod N) can be efficiently computed by repeated squaring mod N.

2 gcd(a,b) can be efficiently computed by the Euclidean algorithm.

A simple randomized algorithm that is “almost correct”

Choose a ZN \ {0} uniformly at random
If gcd(a,N) 6= 1 or aN−1(mod N) 6= 1, then output COMPOSITE
Otherwise output PRIME

This will work if N is not a Carmichael number (also called a false prime);
that is, those composite N such that aN−1 = 1(mod N) for all a ∈ Z ∗N .
Unfortunately, it was relatively recent (1994) that it was proven that there
are infinitely many Carmichael numbers (e.g., 561, 1105, 1129, . . .).

22 / 1

The Miller-Rabin 1-sided error algorithm

Miller-Rabin algorithm for testing if N is composite/prime

Compute t, u with t ≥ 1 and u odd such that N − 1 = (2tu)
% Note all computations are (mod N)
x0 := 2u

Randomly choose a ∈ ZN \ {0}
For i = 1, . . . t

xi := x2i=1 If xi = 1 and xi−1 /∈ {−1, 1} then report COMPOSITE
and terminate.
End For
If xt 6= 1 then report COMPOSITE
Else report PRIME

Claim: Prob[algorithm reports PRIME — N is composite] ≤ 1
2

Proof relies on the fact that if N is a Carmiicahel number then
N = N1 · N2 with gcd(N1,N2) = 1.

23 / 1

Fixed parameter tractable (FPT) problems

Consider the following two related NP-complete problems.

1 Independent set: Given a graph G = (V ,E) and positive integer k ,
does G have an independent set V ′ ⊆ V of size (at least) k?

2 Vertex cover: Given a graph G = (V ,E) and positive integer k, does
G have a vertex cover V ′ ⊆ V of size (at most) k

Clearly, by exhaustive search one can determine (and find) if an
appropriate subset V ′ exists in say time O(mnk) where m = |E |, n = |V |. .

Is this “type” of exponential complexity necessary?
The answer is

1 Yes (i.e. no no(k) algorithm is believed to exist for independent set)
and

2 NO (i.e. there is an O(2k + n2) time algorithm for vertex cover).
The current best result is O(1.2832kk + k|V |).

24 / 1

Fixed parameter tractable (FPT) problems

Consider the following two related NP-complete problems.

1 Independent set: Given a graph G = (V ,E) and positive integer k ,
does G have an independent set V ′ ⊆ V of size (at least) k?

2 Vertex cover: Given a graph G = (V ,E) and positive integer k, does
G have a vertex cover V ′ ⊆ V of size (at most) k

Clearly, by exhaustive search one can determine (and find) if an
appropriate subset V ′ exists in say time O(mnk) where m = |E |, n = |V |. .

Is this “type” of exponential complexity necessary?
The answer is

1 Yes (i.e. no no(k) algorithm is believed to exist for independent set)
and

2 NO (i.e. there is an O(2k + n2) time algorithm for vertex cover).
The current best result is O(1.2832kk + k|V |).

24 / 1

An FPT algorithm for vertex coverBounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2 height: ≤ k

Height of the search tree is ≤ k ⇒ number of leaves is ≤ 2k ⇒ complete search
requires 2k · poly steps.

Fixed Parameter Algorithms – p.5/98

Figure: Figure from Daniel Marx slides

25 / 1

Fixed parameter tractable problems (FPT)
continued

For each input we would like to define an appropriate integer parameter k .
In the vertex cover problem we can define k to be the size of an optimal
vertex cover.

For some problems, the parameter may be a property of the input; for
example, the diameter, max degree or average degree of a graph.

Definition: A parametrized problem is FPT if for all n (the length of the
input) and k (the parameter), there is a f (k)nc time algorithm for some
constant c .
That is, for all fixed k , there is a polynomial time algorithm.

The study of which problems are FPT and which are believed (according
to some hypothesis) to not be FPT is an ongoing reseearch topic of wide
interest and importance. This is one approach to bridging the gap between
theory and practice.

26 / 1

How does one show that a problem is or is not FPT

To have a theory analogous to the theory of NP completeness, we need to
have an appropriate reduction ≤FPT and a class C of conjectured hard
problems (i.e., problems that are not FPT) such that:

If L1 ≤FPT L2 and L2 is FPT, then L1 is FPT. We can then show that
a given problem is FPT directly (as in the vextex cover algorithm) or
using the reduction to a known FPT problem.

To show a problem L is not FPT, we need to shpw that L′ ≤FPT L for
some problem L′ that is known to be “hard” for all problems in the
conjectured hard class C; that is, if P ∈ C, then P ≤FPT L′. That is,
L′ is complete for the class C.

And, as in NP completeness, we need to show that there is a good
hardness candidate (analogous to SAT). one such problem is the
Independent Set Problem.

We will need a reduction more frefined than just polynomial time. (We
also need such reduction when dealing with approximation algorithms.)

27 / 1

Some NP hard problems that are FPT

Vertex cover of size k

Simple path of length exactly k

Does there exist k disjoint triangles

Drawing a graph in the plane with k edge crossings

And many more

28 / 1

Some problems believed to not be FPT

Clique

Independent set

Hitting Set

Set Cover

And literally hundreds of other problems

29 / 1

Sublinear time algorithms

We now consider a context in which randomization is usually provably
more essential. In particular, we will study sublinear time algorithms. Why
intuitively is randomization more essential?

An algorithm is sublinear time if its running time is o(n), where n is
the “length” of the input. As such an algorithm must provide an
answer without reading the entire input.

Thus to achieve non-trivial tasks, we almost always have to use
randomness in sublinear time algorithms to sample parts of the inputs
and/or to randomly keep “snapshots” of what we have seen.

The subject of sublinear time algorithms is an extensive topic and we
will only present two examples.

The general flavour of sublinear time results will be a tradeoff
between the accuracy of the solution and the time bound. There is
some relation between this topic and distributed local algorithms.

This topic will take us beyond search and optimization problems.

30 / 1

Sublinear time algorithms

We now consider a context in which randomization is usually provably
more essential. In particular, we will study sublinear time algorithms. Why
intuitively is randomization more essential?

An algorithm is sublinear time if its running time is o(n), where n is
the “length” of the input. As such an algorithm must provide an
answer without reading the entire input.

Thus to achieve non-trivial tasks, we almost always have to use
randomness in sublinear time algorithms to sample parts of the inputs
and/or to randomly keep “snapshots” of what we have seen.

The subject of sublinear time algorithms is an extensive topic and we
will only present two examples.

The general flavour of sublinear time results will be a tradeoff
between the accuracy of the solution and the time bound. There is
some relation between this topic and distributed local algorithms.

This topic will take us beyond search and optimization problems.

30 / 1

A deterministic exception: estimating the diameter
in a finite metric space

We first conisder an exception of a “sublinear time” algorithm that
does not use randomization. (Comment: “sublinear in a weak sense”.)

Suppose we are given a finite metric space M (with say n points xi)
where the input is given as n2 distance values d(xi , xj). The problem
is to compute the diameter D of the metric space, that is, the
maximum distance between any two points.

For this maximum diameter problem, there is a simple O(n) time (and
hence sublinear in n2, the number of distances) algorithm; namely,
choose an arbitrary point x ∈ M and compute D = maxj d(x , xj). By
the triangle inequality, D is a 2-approximation of the diameter.

I say sublinear time in a weak sense because in an implicitly
represented distance function (such as d dimensional Euclidean
space), the points could be explicitly given as inputs and then the
input size is n and not n2.

31 / 1

Sampling the inputs: some examples

The goal in this area is to minimize execution time while still being
able to produce a reasonable answer with sufficiently high probability.

Recall that by independent trials, we can reduce the probability of
error.

We will consider the two following examples:

1 Finding an element in an sorted (doubly) linked list
[Chazelle,Liu,Magen]

2 Estimating the average degree in a graph [Feige 2006]

Note: In many cases, sublinear time algorithms will be “simple” or
“reasonably natural” but the analysis might be quite non-trivial.

32 / 1

Finding an element in a sorted list of distinct
elements.

Suppose we have an array A[i] for 1 ≤ i ≤ n where each A[i] is a
triple (xi , pi , si) where the {pi , si} constitute a doubly linked list.

That is, pi = j : argmax{j |xj < xi} if such an xj exists and similarly
qi = argmin|xj > xi}.
We would like to determine if a given value x occurs in a doubly
linked list and if so, output the index j such that x = xj .

A
√
n algorithm for searching in a sorted linked list

Let R = {ji |1 ≤ i ≤ √n} be
√
n randomly chosen indices.

Access these {A[ji]} to determine the predecessor and successor of x
amongst these randomly chosen elements of the list. (There may not be
both a predecssor and successor.) Then (alternately) do a brute force
linked search (or resp. search for

√
n steps) in both directions of the linked

list to determine whether or not xk exists.

33 / 1

Finding an element in a sorted list (continued)

Claim:

This is a zero sided (resp, one-sided error algorithm) that runs in expected
time O(

√
n) (resp. has constant probability of not find x if it exists).

Using the Yao principle this expected time can be shown to be
optimal.

The same can be done for a singly linked list if the list is “anchored” ;
i.e., we have the index of the smallest element in the list.

Similar results were shown by Chazelle, Liu and Magen for various
geometric problems such as determining whether or not two convex
polygons (represented by doubly linked lists of the vertices) intersect.

Note that most sublinear time algorithms are either randomized
1-sided or 2-sided error algorithms and not 0-sided algorithms that
always compute a correct answer but whose running time is bounded
in expectation.

34 / 1

Estimating average degree in a graph

Given a graph G = (V ,E) with |V | = n, we want to estimate the
average degree d of the vertices. We can assume that G is connected
and hence there are at least n − 1 edges.

We want to construct an algorithm that approximates the average
degree within a factor less than (2 + ε) with probability at least 3/4 in

time O(
√
n

poly(ε)). We will assume that we can access the degree di of
any vertex vi in one step.

Again, we note that like a number of results in this area, the
algorithm is simple but the analysis requires some care.

The (simplified) Feige algorithm in Czumaj and Sohler survey.

Sample 8/ε random subsets Si of V each of size (say)
√
n
ε3

Compute the average degree ai of nodes in each Si .
The output is the minimum of these {ai}.

35 / 1

The analysis of the approximation

Since we are sampling subsets to estimate the average degree, we might
have estimates that are too low or too high. But it can be shown that
with high probability these estimates will not be too bad. More precisely,
we need:

1 Lemma 1: Prob[ai <
1
2(1− ε)d̄] ≤ ε

64

2 Lemma 2: Prob[ai > (1 + ε)d̄] ≤ 1− ε
2

The probability bound in Lemma 2 follows from the Markov inequality
which is then amplified as usual by the repeated 8/ε trials so that the
probability that all of the ai are bigger than (1 + ε)d̄ is at most
(1− ε/2)8/ε = (1− 1/t)4t ≤ (1/e)4t letting t = 2/ε.

36 / 1

The analysis of the average degree (continued)

From Lemma 1, we fall outside the desired bound if any of the repeated
trials gives a very small estimate of the average degree but by the union
bound this is no worse than the sum of the probabilities for each trial.

It remains to sketch a proof of Lemma 1. Let H be the set of the
√
εn

highest degree vertices in V and L = V \ H. Then∑
v∈L dv ≥ (12 − ε)

∑
v∈V dv since there can be at most ε · n edges

within H and every edge adjacent to L contribues at least 1 to the
sum of degrees of vertices adjacent to L and thereare at least n − 1
edges. The 1

2 is becasue we are possibly double counting the
contribution of edges within L.

For a lower bound on the average degree of vertices in a sample set
S , the worst case is if all the sampled vertices are in L.

37 / 1

Conclusion of proof sketch for Lemma 1

Let Xj be the random variable corresonding to the i th sampled vertex
in a sampled set S where each such S has size s. By Hoeffding’s
generalization of the Chernoff bound, we have

Prob[(1/s)(
s∑
j

Xj ≤ (1− ε)(1/|L|)[
∑
v∈L

deg(v)]

is exponentially small; that is, the probability that the average degree
in a sampled set is (1− ε) less than the average degree in L is
exponentially small.

But the average degree of a vertex in L is at least (1/2− ε) times the
average degree in the graph so that being less than (1/2− ε) the
average degree is exponentially small.

Feige’s more detailed analysis shows that a (2 + ε) approximation can
be obtained using time (i.e., queries) O(

√
n/d0/ε) for graphs with

average degree at least d0.

38 / 1

The streaming model

In the data stream model, the input is a sequence A of inputs
a1, . . . , am where say each ai ∈ {1, 2, . . . , n}; the stream is assumed
to be too large to store in memory.

We usually assume that m is not known and hence one can think of
this model as a type of online or dynamic algorithm that is
maintaining (say) current statistics.

The space available S(m, n) is some sublinear function. The input
streams by and one can only store information in space S .

In some papers, space is measured in bits (which is what we will
usually do) and sometimes in words, each word being O(log n) bits.

It is also desirable that that each input is processed efficiently, say
log(m + n) and perhaps even in time O(1) (assuming we are counting
operations on words as O(1)).

39 / 1

The streaming model continued

The initial (and primary) work in streaming algorithms is to
approximately compute some function (say a statistic) of the data or
identify some particular element(s) of the data stream.

Lately, the model has been extended to consider “semi-streaming”
algorithms for optimization problems. For example, for a graph
problem such as matching for a graph G = (V ,E), the goal is to
obtain a good approximation using space Õ(|V |) rather than O(|E |).

Most results concern the space required for a one pass algorithm. But
there are other results concerning the tradeoff between the space and
number of passes.

40 / 1

An example of a deterministic streaming algorithms

As in sublinear time, it will turn out that almost all of the results in this
area are for randomized algorithms. Here is one exception.

The missing element problem

Suppose we are given a stream A = a1, . . . , an−1 and we are promised that
the stream A is a permutation of {1, . . . , n} − {x} for some integer x in
[1, n]. The goal is to compute the missing x .

Space n is obvious using a bit vector cj = 1 iff j has occured.

Instead we know that
∑

j∈A = n(n + 1)/2− x .
So if s =

∑
i∈A ai , then x = n(n + 1)/2− s.

This uses only 2 log n space and constant time/item.

41 / 1

Generalizing to k missing elements

Now suppose we are promised a stream A of length n − k whose elements
consist of a permutation of n− k distinct elements in {1, . . . , n}. We want
to find the missing k elements.

Generalizing the one missing element solution, to the case that there
are k missing elements we can (for example) maintain the sum of j th

powers (1 ≤ j ≤ k) sj =
∑

i∈A(ai)
j = cj(n)−∑

i /∈A x ji . Here cj(n) is
the closed form expression for

∑n
i=1 i

j . This results in k equations in
k unknowns using space k2 log n but without an efficient way to
compute the solution.

As far as I know there may not be an efficient small space streaming
algorithm for this problem.

Using randomization, much more efficient methods are known;
namely, there is a streaming alg with space and time/item
O(k log k log n); it can be shown that Ω(k log(n/k)) space is
necessary.

42 / 1

Another simple example

Consider a problem similar to question 1 in the first assignment. Namely,
if there is an element appearing more than n/2 times in a stream of n
elements, output this element.

Majority streaming algorithm

The following algorithm will always output some b and if there is a
majority element, it will be b. To verify that b is actually a majorxty
element, a second pass is needed.
Stack := ∅
For i ..n

If Stack empty then push ai onto the Stack.
Else if ai is the element on top of the stack then push ai onto the Stack
Else pop the stack.

End For

43 / 1

Some well-studied streaming problems

Computing frequency moments. Let A = a1 . . . am be a data stream
with ai ∈ [n] = {1, 2, . . . n}. Let mi denote the number of occurences
of the value i in the stream A. For k ≥ 0, the kth frequency moment
is Fk =

∑
i∈[n](mi)

k . The frequency moments are most often studied
for integral k .

1 F1 = m, the length of the sequence which can be simply computed.
2 F0 is the number of distinct elements in the stream
3 F2 is a special case of interest called the repeat index (also known as

Ginis homogeneity index).

Finding k-heavy hitters; i.e. those elements appearing at least n/k
times in stream A.

Finding rare or unique elements in A.

44 / 1

What is known about computing Fk?

Given an error bound ε and confidence bound δ, the goal in the frequency
moment problem is to compute an estimate F ′k such that
Prob[|Fk − F ′k | > εFk] ≤ δ.

The seminal paper in this regard is by Alon, Matias and Szegedy
(AMS) [1999]. AMS establish a number of results:

1 For k ≥ 3, there is an Õ(m1−1/k) space algorithm. The Õ notation
hides factors that are polynomial in 1

ε and polylogarithmic in m, n, 1δ .
2 For k = 0 and every c > 2, there is an O(log n) space algorithm

computing F ′0 such that
Prob[(1/c)F0 ≤ F ′0 ≤ cF0 does not hold] ≤ 2/c .

3 For k = 1, log n is obvious to exactly compute the length but an
estimate can be obtained with space O(log log n + 1/ε)

4 For k = 2, they obtain space Õ(1) = O(log(1/δ
ε2)(log n + logm))

5 They also show that for all k > 5, there is a (space) lower bound of
Ω(m1−5/k).

45 / 1

Results following AMS

A considerable line of research followed this seminal paper. Notably
settling conjectures in AMS:

The following results apply to real as well as integral k .

1 An Ω̃(m1−2/k) space lower bound for all k > 2 (Bar Yossef et al
[2002]).

2 Indyk and Woodruff [2005] settle the space bound for k > 2 with a
matching upper bound of Õ(m1−2/k)

The basic idea behind these randomized approximation algorithms is
to define a random variable Y whose expected value is close to Fk
and variance is sufficiently small such that this r.v. can be calculated
under the space constraint.

We will just sketch the (non optimal) AMS results for Fk for k > 2
and the result for F2.

46 / 1

The AMS Fk algorithm

Let s1 = (8
ε2
m1− 1

k)/δ2 and s2 = 2 log 1
δ .

AMS algorithm for Fk

The output Y of the algorithm is the median of s2 random variables
Y1,Y2,,Ys2 where Yi is the mean of s1 random variables Xij , 1 ≤ j ≤ s1
. All Xij are independent identically distributed random variables. Each
X = Xij is calculated in the same way as follows: Choose random
p ∈ [1, . . . ,m], and then see the value of ap. Maintain
r = |{q|q ≥ p and aq = ap}|. Define X = m(rk − (r − 1)k).

Note that in order to calculate X , we only require storing ap (i.e.
log n bits) and r (i.e. at most logm bits). Hence the Each X = Xij is
calculated in the same way using only O(log n + log n) bits.
For simplicity we assume the input stream length m is known but it
can be estimated and updated as the stream unfolds.
We need to show that E[X] = Fk and that the variance Var [X] is
small enough so as to use the Chebyshev inequality to show that
Prob[|Yi − Fk | > εFk is small. 47 / 1

AMS analysis sketch

Showing E [X] = Fk .

m

m
[(1k + (2k − 1k) + . . .+ (mk

1 − (m1 − 1)k))+

(1k + (2k − 1k) + . . .+ (mk
2 − (m2 − 1)k)) ++

(1k + (2k − 1k) + . . .+ (mk
n − (mn − 1)k))]

(by telescoping)

=
n∑
i

mk
i

= Fk

48 / 1

AMS analysis continued

Y is the median of the Yi . It is a standard probabilistic idea that the
median Y of identical r.v.s Yi (each having constant probability of
small deviation from their mean Fk) implies that Y has a high
probability of having a small deviation from this mean.

E [Yi] = E [X] and Var [Yi] ≤ Var [X]/s1 ≤ E [X 2]/s1.

The result needed is that Prob[|Yi − Fk | > εFk] ≤ 1
8

The Yi values are an average of independent X = Xij variables but
they can take on large vales so that instead of Chernoff bounds, AMS
use the Chebyshev inequality:

Prob[|Y − E [Y]| > εE [Y]] ≤ Var [Y]

ε2E [Y]

It remains to show that E [X 2] ≤ kF1F2k−1 and that
F1F2k−1 ≤ n1−1/kF 2

k

49 / 1

Sketch of F2 improvement

They again take the median of s2 = 2 log(1δ) random variables Yi but
now each Yi will be the sum of only a constant number s1 = 16

ε2
of

identically distibuted X = Xij .

The key additional idea is that X will not maintain a count for each
particular value separately but rather will count an appropriate sum
Z =

∑n
t=1 btmt and set X = Z 2.

Here is how the vector < b1, . . . , bn >∈ {−1, 1}n is randomly chosen.

Let V = {v1, . . . , vh} be a set of O(n2) vectors over {−1, 1} where
each vector vp =< vp,1, . . . , vp,n >∈ V is a 4-wise independent vector
of length n.

Then p is selected uniformly in {1, . . . , h} and < b1, . . . , bn > is set
to vp.

50 / 1

	Week 12

