
CSC373: Algorithm Design,
Analysis and Complexity
Fall 2017
DENIS PANKRATOV

NOVEMBER 22, 2017

Coping with NP-hardness
You proved your problem of interest is NP-hard

Now what?

In practice, you still need to solve problems

The high level goal is to get good enough solutions by any means necessary

“Good enough” = approximation algorithms

You could simply attack the problem of designing algorithms head on – invent
something ad-hoc

Or you could try out some algorithmic paradigms – general methods that seem
to work well for other problems, so they may be adapted to work for your
problem too

Coping with NP-hardness
Do you know who else needs to routinely solve NP-hard problems?

NATURE!
Borrow some inspiration for algorithmic paradigms from it

One of its most successful algorithmic paradigms is evolution:

Incremental process of

(1) introducing small mutations,

(2) trying them out, and

(3) keeping them if they work well.

Local Search Algorithmic Paradigm

possible small mutations Ù local neighborhood

trying mutations out Ù enumerating the entire local neighborhood

keeping mutations if they work well Ù updating 𝑆 to 𝑆’ if 𝑆’ is better than 𝑆
Set of all possible solutions is called solution space or state space
Not to be confused with so-called “genetic algorithms” that mutate several
solutions simultaneously and mutations might depend on several solutions

Start with some solution 𝑆
While there is a “better” solution 𝑆’ in the local neighborhood of 𝑆

update 𝑆 to 𝑆’

Local Search Applications
(1) As an approximation algorithmic paradigm with provable guarantees
(2) As an algorithmic heuristic without provable guarantees but that tends to
work extremely well in practice
Examples:
Maximum flow (exact algorithms)
Finding independent sets in restricted classes of graphs (exact algorithms)
Maximum satisfiability, graph partitioning (provable guarantees)
Travelling salesman problem, VLSI design (heuristic)
Programming computer to play chess (heuristic)
As a preprocessing step for exact algorithms, etc.

Plan
(1) Exact Max-2-SAT (was briefly covered last lecture)

(2) Programming Computer to Play Chess

(3) Travelling Salesman Problem Heuristics

(4) Coping with Local Optima

Example: Exact Max-2 SAT
INPUT: CNF formula 𝐹

n variables 𝑥1, 𝑥2,… , 𝑥𝑛
m clauses 𝐶1 ∧ 𝐶2 ∧ ⋯∧ 𝐶𝑚
each clause has exactly 2 variables

OUTPUT: assignment 𝜏 to the variables that satisfies as many clauses as possible

This problem is NP-hard to solve exactly

Solution space = {all possible assignments to variables}. It’s size is 2𝑛

Exact Max-2-SAT
Example n = 3, m = 6

(¬𝑥1 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥3) (¬𝑥3 ∨ ¬𝑥1) (𝑥1 ∨ 𝑥3) (¬𝑥3 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥1)

Most natural local search algorithm:

Start with some assignment

Try flipping any bit in that assignment and see if it increases number of satisfied
clauses

If so, flip the bit and repeat; otherwise terminate

Exact Max-2-SAT
Example n = 3, m = 6

(¬𝑥1 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥3) (¬𝑥3 ∨ ¬𝑥1) (𝑥1 ∨ 𝑥3) (¬𝑥3 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 ¬𝑥1 ∨ 𝑥2 ¬𝑥2 ∨ 𝑥3 ¬𝑥3 ∨ ¬𝑥1 𝑥1 ∨ 𝑥3 ¬𝑥3 ∨ 𝑥2 ¬𝑥2 ∨ 𝑥1 Num sat
clauses

1 0 1 0 1 0 1 0 1 3

Exact Max-2-SAT
Example n = 3, m = 6

(¬𝑥1 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥3) (¬𝑥3 ∨ ¬𝑥1) (𝑥1 ∨ 𝑥3) (¬𝑥3 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 ¬𝑥1 ∨ 𝑥2 ¬𝑥2 ∨ 𝑥3 ¬𝑥3 ∨ ¬𝑥1 𝑥1 ∨ 𝑥3 ¬𝑥3 ∨ 𝑥2 ¬𝑥2 ∨ 𝑥1 Num sat
clauses

1 0 1 0 1 0 1 0 1 3

1 1 1 1 1 0 1 1 1 5

Exact Max-2-SAT
Example n = 3, m = 6

(¬𝑥1 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥3) (¬𝑥3 ∨ ¬𝑥1) (𝑥1 ∨ 𝑥3) (¬𝑥3 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 ¬𝑥1 ∨ 𝑥2 ¬𝑥2 ∨ 𝑥3 ¬𝑥3 ∨ ¬𝑥1 𝑥1 ∨ 𝑥3 ¬𝑥3 ∨ 𝑥2 ¬𝑥2 ∨ 𝑥1 Num sat
clauses

1 0 1 0 1 0 1 0 1 3

1 1 1 1 1 0 1 1 1 5

0 1 1 1 1 1 1 1 0 5

Exact Max-2-SAT
Example n = 3, m = 6

(¬𝑥1 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥3) (¬𝑥3 ∨ ¬𝑥1) (𝑥1 ∨ 𝑥3) (¬𝑥3 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 ¬𝑥1 ∨ 𝑥2 ¬𝑥2 ∨ 𝑥3 ¬𝑥3 ∨ ¬𝑥1 𝑥1 ∨ 𝑥3 ¬𝑥3 ∨ 𝑥2 ¬𝑥2 ∨ 𝑥1 Num sat
clauses

1 0 1 0 1 0 1 0 1 3

1 1 1 1 1 0 1 1 1 5

0 1 1 1 1 1 1 1 0 5

1 1 0 1 0 1 1 1 1 5

Exact Max-2-SAT
Example n = 3, m = 6

(¬𝑥1 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥3) (¬𝑥3 ∨ ¬𝑥1) (𝑥1 ∨ 𝑥3) (¬𝑥3 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 ¬𝑥1 ∨ 𝑥2 ¬𝑥2 ∨ 𝑥3 ¬𝑥3 ∨ ¬𝑥1 𝑥1 ∨ 𝑥3 ¬𝑥3 ∨ 𝑥2 ¬𝑥2 ∨ 𝑥1 Num sat
clauses

1 0 1 0 1 0 1 0 1 3

1 1 1 1 1 0 1 1 1 5

0 1 1 1 1 1 1 1 0 5

1 1 0 1 0 1 1 1 1 5

Landscape of Solution Space
Global max
can also be flat

Approximation Guarantee
If local search algorithm terminates it ends up in a local optimum

How good is that optimum?

Worst-case approximation guarantee (locality gap) is the ratio between smallest
local optimum and global optimum (for maximization problem)

Largest such ratio
is the locality gap

Approximation Guarantee of Local
Search for Exact MAX-2-SAT
We shall prove that our local search algorithms achieves 2/3 approximation ratio

Proof: Let 𝜏 be a local optimum
◦ 𝑆0 - clauses not satisfied by 𝜏
◦ 𝑆1 - clauses satisfied by exactly one literal by 𝜏
◦ 𝑆2 - clauses satisfied by exactly two literals by 𝜏

Eg. (¬𝑥1 ∨ 𝑥2) (¬𝑥2 ∨ 𝑥3) (¬𝑥3 ∨ ¬𝑥1) (𝑥1 ∨ 𝑥3) (¬𝑥3 ∨ 𝑥2) ¬𝑥2 ∨ 𝑥1
Local opt 𝜏: 𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 1
𝑆0 = (¬𝑥3 ∨ ¬𝑥1)
𝑆1 = { ¬𝑥1 ∨ 𝑥2 , ¬𝑥2 ∨ 𝑥3 , ¬𝑥3 ∨ 𝑥2 , ¬𝑥2 ∨ 𝑥1 }
𝑆2 = {(𝑥1 ∨ 𝑥3)}

Approximation Guarantee of Local
Search for Exact MAX-2-SAT
Let 𝜏 be a local optimum
◦ 𝑆0 - clauses not satisfied by 𝜏
◦ 𝑆1 - clauses satisfied by exactly one literal by 𝜏
◦ 𝑆2 - clauses satisfied by exactly two literals by 𝜏

Our algorithm finds an assignment satisfying 𝑆1 + |𝑆2| clauses
Optimum is clearly less than the total number of clauses 𝑆0 + 𝑆1 + |𝑆2|

Thus, we need to show 𝑆1 +|𝑆2|
𝑆0 + 𝑆1 +|𝑆2|

≥ 2
3
. Alternatively, show 𝑆0

𝑆0 + 𝑆1 +|𝑆2|
≤ 1

3

Approximation Guarantee of Local
Search for Exact MAX-2-SAT
Clause involves variable 𝑥𝑖 if either 𝑥𝑖 or ¬𝑥𝑖 occurs in it

𝐴𝑖 - set of clauses in 𝑆0 involving 𝑥𝑖
𝐵𝑖 - set of clauses in 𝑆1 involving 𝑥𝑖 and satisfied by 𝑥𝑖 in 𝜏

𝐶𝑖 - set of clauses in 𝑆2 involving 𝑥𝑖
Local optimum means |𝐴𝑖| ≤ |𝐵𝑖| for all 𝑖
Also we have σ𝑖 |𝐴𝑖| = 2|𝑆0| and σ𝑖 |𝐵𝑖| = |𝑆1|
Hence 2|𝑆0| ≤ |𝑆1|, thus

𝑆0
𝑆0 + 𝑆1 +|𝑆2|

≤ 𝑆0
𝑆0 +2 𝑆0 +|𝑆2|

≤ 𝑆0
3 𝑆0

≤ 1
3

QED

Approximation Guarantee of Local
Search for Exact MAX-2-SAT
Our simple local search finds a 2/3-approximation.

This analysis and algorithm can be generalized to the case where you associate
arbitrary weights with clauses and the goal is to satisfy a set of clauses of
maximum weight.

In our algorithm we said a modification of an assignment is improving if it
increases the number of satisfied clauses

Better algorithm can be obtained with a different criterion for “improving” step
(non-oblivious local search)

See Allan’s slides for more information!

Other Interesting Applications
Claude Shannon (1916-2001)

One of the mathematical giants of the 20th century

Single-handedly introduced information theory

“A Mathematical Theory of Communication” (1948)

Less known paper

“Programming a computer for playing chess” (1950)

Programming a Computer to Play Chess
Shannon’s proposal:

Encode a valid chess configuration by a 2-dimensional array

Define a “goodness” function
◦ maps each chess configuration to a number
◦ the higher the number the better configuration is for the

player, e.g., if your king is checked in this configuration
its not good. If you have a lot of pieces as opposed to your
opponent, the configuration is good. Can make this precise in many ways

Computer program considers various valid moves and resulting configurations,
and picks a better one according to the “goodness” function

Programming a Computer to Play Chess
Shannon’s proposal is a local search algorithm!

State space: all possible valid chess configurations

Neighborhood: all chess configurations reachable from the current one in one
step

Shannon also suggested extensions and improvements:
◦ Larger neighborhoods – chess configs resulting from several

moves
◦ Certain moves are certainly bad and should not be explored

further (pruning)
◦ Suggested that machine learning techniques should guide

the choice of a “goodness” function and pruning strategies

Travelling Salesman Problem (TSP)
Complete graph

Positive weights on every edge
◦ Symmetric case: 𝑤 𝑖, 𝑗 = 𝑤(𝑗, 𝑖)
◦ Triangle inequality: 𝑤 𝑖, 𝑗 ≤ 𝑤 𝑖, 𝑘 + 𝑤(𝑘, 𝑗)
◦ Euclidean distance, i.e. nodes are located on a plane, weight of edge = dist

Find shortest tour (visit every node exactly once)

Madiera Island (west of Morocco)
Find a min distance tour visiting every city

Graph Representation

7
8

Not all edges are shown: there is an edge between
every pair of vertices; weight of an edge = distance

Example of a Tour

Local Search Heuristic
Solution space = {all possible tours, i.e., permutations, visiting 𝑛 cities}
Solution space size is (𝑛 − 1)!
Pick a solution, do local improving steps until get stuck in a local opt

But what are local improving steps?

2-opt idea: take two edges out, put in two other edges in

Local Search for TSP
3-opt: take out 3 edges, put in 3 new edges

More generally, k-opt for any k is known as Lin-Kernighan heuristic

Bigger k bigger neighborhood!

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Local Search for TSP, Exact Methods,
Some Benchmarks
1954 : 49 cities
1971 : 64 cities
1975 : 100 cities
1977 : 120 cities
1980 : 318 cities
1987 : 2,392 cities
1994 : 7,397 cities
1998 : 13,509 cities
2001 : 15,112 cities

Many of these results rely on Lin-Kernighan
heuristic

Thus, nowadays people can solve TSP exactly
with tens of thousands of vertices, but the
problem is NP-hard!

This is a testament to how good these heuristics
are in practice

Why Heuristic?
Well defined algorithms, so
◦ What is the overall running time?
◦ What is its approximation ratio?

In spite of large interest in local search methods for TSP, no one knows an
answer to either of those questions.

Dealing with Local Optima
Algorithm gets stuck in local optima

To improve performance want methods to push algorithm out of local optima

Simplest methods:

Random restarts – when algorithm gets stuck in a local optimum, restart it at a
random initial solution

Add more randomization – when algorithms picks which solution to move to
(locally), pick any improving solution with some probability

Logic for more randomization is that maybe your algorithm gets stuck in a bad
local optimum due to systematic choices it makes during the runtime

Dealing with Local Optima
Taking idea of randomization further:

With some small probability, allow your algorithm to make a local step that is
worse than the current solution

Vary this probability with time
◦ Initially this probability is rather large to allow your algorithm to explore

solution space widely
◦ Later this probability of taking a non-improving step decreases more and

more allowing the algorithm to narrow down on a promising region in the
solution space

Dealing with Local Optima
Previous slide describes simulated annealing technique

It is usually very successful in practice outperforming simple local search, but it
is incredibly difficult to analyze

NEW TOPIC:
DUAL FITTING

What is Dual Fitting?
Technique for analyzing approximation ratio of an algorithm

In many cases, the algorithm is greedy

The algorithm is interpreted as building a primal solution

In the analysis, you build a dual solution of similar value

Set Cover Problem
We are given a universe of 𝑛 elements {1,2,… , 𝑛} and 𝑚 subsets of the universe
𝑆1, 𝑆2, … , 𝑆𝑚
A set cover is a collection of these sets that covers each element at least ones

The goal is to find a cover of minimum size. This is NP-hard.

Greedy Algorithm
Pick a subset that covers the most number of uncovered elements.

Repeat until all elements are covered.

Greedy Algorithm
Pick a subset that covers the most number of uncovered elements.

Repeat until all elements are covered.

Greedy Algorithm
Pick a subset that covers the most number of uncovered elements.

Repeat until all elements are covered.

Greedy Algorithm
Pick a subset that covers the most number of uncovered elements.

Repeat until all elements are covered.

Greedy Algorithm
Pick a subset that covers the most number of uncovered elements.

Repeat until all elements are covered.

Our goal: prove that this algorithm is within 𝒍𝒏𝒏 + 𝑶(𝟏) of the optimal value.

An Integer Program for Set Cover
𝑥𝑆 is an indicator variable: 1 if 𝑆 is picked in the set cover and 0 otherwise

^ 1̀,0:

1:

min

:

��

t� ¦

¦

�

S

SeS
S

S
S

xS

xe

x
Every element 𝑒 should be included
in at least one set.

LP Relaxation of Set Cover
Replace the integrality constraint 𝑥𝑆 ∈ {0,1} by a linear constraint 0 ≤ 𝑥𝑆 ≤ 1

0:

1:

min

:

t�

t� ¦

¦

�

S

SeS
S

S
S

xS

xe

x

^ 1̀,0:

1:

min

:

��

t� ¦

¦

�

S

SeS
S

S
S

xS

xe

x

Dual LP

0:

1:

min

:

t�

t� ¦

¦

�

S

SeS
S

S
S

xS

xe

x

𝑦𝑒

0:

1:

max

t�

d� ¦

¦

�

�

e

Se
e

Ue
e

ye

yS

y

PRIMAL DUAL

Analysis Goal: Sandwich OPT between
Algorithm’s Soln and a Feasible Dual Soln

Objective value

Greedy
Solution

OPT

LP
Solution

Dual Solution
(we will construct it)

dual feasible primal feasible
Approximation ratio

The Algorithm vs the Prover

0:

1:

min

:

t�

t� ¦

¦

�

S

SeS
S

S
S

xS

xe

x

0:

1:

max

t�

d� ¦

¦

�

�

e

Se
e

Ue
e

ye

yS

y

PRIMAL DUAL Consider two entities: the algorithm and the prover

The algorithm can be viewed as constructing a
feasible solution to PRIMAL

The prover will be constructing a feasible solution
to the DUAL

If the prover succeeds at constructing a feasible solution within 𝛼 fraction of the
primal solution, it means that the approximation ratio is 𝛼

Prover is completely imaginary – we play the role of the prover

The Algorithm vs the Prover

0:

1:

min

:

t�

t� ¦

¦

�

S

SeS
S

S
S

xS

xe

x

0:

1:

max

t�

d� ¦

¦

�

�

e

Se
e

Ue
e

ye

yS

y

PRIMAL DUAL Consider a particular step in the algorithm
- Algorithm selects a new set 𝑆
- This set covers 𝑘 new elements

The algorithm can be viewed as constructing a
feasible solution to PRIMAL: 𝒙𝑺 = 𝟏
Note: this adds value 1 to the primal objective

As a prover, we need to create some dual soln, i.e., assign 𝑦𝑒 values to all newly
covered elements 𝑒.
First try: assign 𝒚𝒆 = 𝟏/𝒌
The good: we added the total of 𝑘 1/𝑘 = 1 value to the dual objective
The bad: our dual vars violate dual constraints (set 𝑆 can have prev. covered elts)

Making Prover’s Dual Solution Feasible
We set 𝒚𝒆 = 𝟏/𝒌 where 𝑘 is the number of new elements covered at the time
element 𝑒 was covered.

Consider an arbitrary set S. We would like to enforce σ𝑒∈𝑆 𝑦𝑒 ≤ 1 .

Assume without loss of generality that if greedy covers 𝑒𝑗 before 𝑒𝑘 then 𝑗 < 𝑘.

When greedy picked a set to cover 𝑒𝑗, it could also have picked 𝑆 and covered
𝑆 − 𝑗 + 1 new elements.

So 𝑦𝑒 ≤ 1/(𝑆 − 𝑗 + 1)

σ𝑒∈𝑆 𝑦𝑒 ≤ (1 + 1
2
+ 1

3
+⋯+ 1

𝑆
) ≤ ln 𝑆 + 𝑂(1)

Making Prover’s Dual Solution Feasible
We set 𝒚𝒆 = 𝟏/𝒌 where 𝑘 is the number of new elements covered at the time
element 𝑒 was covered.

When variables are set as above, we have

σ𝑒∈𝑆 𝑦𝑒 ≤ (1 + 1
2
+ 1

3
+⋯+ 1

𝑆
) ≤ ln 𝑆 + 𝑂 1 ≤ ln 𝑛 + 𝑂(1)

But we want σ𝑒∈𝑆 𝑦𝑒 ≤ 1

So…? Rescale the variables! Set ෝ𝒚𝒆 =
𝒚𝒆

ln 𝒏+𝑶(𝟏)

Then the variables ෝ𝒚𝒆 form a feasible dual solution.

Making Prover’s Dual Solution Feasible
We set 𝒚𝒆 = 𝟏/𝒌 where 𝑘 is the number of new elements covered at the time
element 𝑒 was covered.

Setting ෝ𝒚𝒆 =
𝒚𝒆

ln 𝒏+𝑶(𝟏)
made the prover’s solution feasible.

What happened to the objective value?

Recall that adding 𝒚𝒆 for all 𝑒 gave exactly the same value as algo’s primal soln

Hence, adding ෝ𝒚𝒆 for all 𝑒 gives a solution of value within 𝒍𝒏𝒏 + 𝑶(𝟏) of
primal’s.

This finishes the proof, since opt is sandwiched between feasible dual and
greedy solution.

NEW TOPIC:
RANDOMIZED ALGORITHMS

Deterministic Algorithms

Goals:

Correctness – algo always solves the problem correctly

Efficiency – algo always solves the problem quickly, e.g., polytime

ALGORITHMINPUT OUTPUT

Randomized Algorithms

ALGORITHM
INPUT

RANDOMNESS

Behavior of the algorithm can vary even for a given fixed input!

Goals:

Correctness – algo often solves the problem correctly (for every input!)

Efficiency – algo often solves the problem quickly, e.g., expected polytime

OUTPUT
DISTRIBUTION

Probabilistic Analysis of Algorithms

Goals:

Correctness – algo solves the problem correctly on most inputs

Efficiency – algo solves the problem quickly, e.g., polytime, on most inputs

ALGORITHMRANDOM
INPUT

OUTPUT
DISTRIBUTION

Reasons for Studying Randomized
Algorithms

Simplicity

Performance

For many problems, a randomized algorithm is either the simplest known, the
fastest known, or both

Turning randomized algorithms into deterministic is called “derandomization”

A randomized algorithm is often discovered first, then it is derandomized, but in
the process either runtime or approximation ratio might suffer

In certain cases, people don’t know if an algorithm can be derandomized

Lastly, in some problem settings (e.g., sublinear time algorithms) randomization
is provably necessary!

Applications of Randomized Algorithms
Number theory (primality testing)

Data structures (hashing)

Algebraic identities (polynomial and matrix identity verification)

Mathematical programming (rounding linear program relaxations)

Counting and enumeration (approximating counting of perfect matchings)

Networking (deadlock avoidance)

Probabilistic method for proving theorems

etc…

This Lecture: Randomized Algos
Plan:

(1) Probability overview

(2) Types of randomized algorithms

(3) Polynomial identity testing

Probability Theory Overview
Mathematical theory of chance

We will only consider finite discrete probability spaces

Probability space is a pair (Ω, 𝑝), where
◦ Ω – sample space, Ω < ∞
◦ 𝑝: Ω → [0,1] – probability distribution, i.e., a function such that

෍
𝜔∈Ω

𝑝(𝜔) = 1

Probability Theory Overview
Event is a subset of the sample space, 𝐴 ⊆ Ω.

How many distinct events are there? Answer: 2|Ω| (prove it!)

Probability distribution extends to events:

Let 𝐴 ⊆ Ω then 𝑝 𝐴 = σ𝜔∈Ω𝑝(𝜔)

𝜔 ∈ Ω is called an elementary event

Probability Theory Overview
Example: throw a fair six-sided dice once

Sample space Ω = {1,2,3,4,5,6}

Probability distribution 𝑝 1 = 𝑝 2 = 𝑝 3 = 𝑝 4 = 𝑝 5 = 𝑝 6 = 1
6

The above distribution is called uniform
More generally, uniform distribution is such that 𝑝 𝜔 = 1/|Ω|
Event 𝐴: “even number shows up on the top of the dice”

Formally, 𝐴 = {2,4,6}, so 𝑝 𝐴 = 𝑝 2 + 𝑝 4 + 𝑝 6 = 3
6
= 1

2

Probability Theory Overview
Back to general definitions

Fix probability space (Ω, 𝑝)
Real-valued random variable is a function 𝑋:Ω → ℝ
It is a misnomer: random variable is
◦ Neither random
◦ Nor a variable

Probability Theory Overview

ℝ𝜔1

𝜔2

𝜔3

𝜔𝑛
Ω

⋮

𝑋 Real-valued random variable
“collapses” elementary events into
groups and associates real numbers
with those groups

These groups are subsets of sample
space, i.e., events, which we denote by
“𝑋 = 𝑣𝑎𝑙𝑢𝑒”

Probability Theory Overview
For example, consider a throw of a fair six-sided dice
Let 𝑋 be the random variable defined as follows:

If the number that comes up is odd, 𝑋 is equal to that number
If the number that comes up is even, 𝑋 is equal to half of that number

In other words,
𝑋 1 = 1

𝑋 2 = 2/2 = 1
𝑋 3 = 3

𝑋 4 = 4/2 = 2
𝑋 5 = 5

𝑋 6 = 6/2 = 3

Probability Theory Overview

ℝ
1

2

3

6Ω

𝑋

4

5 1
2
3
4
5

Events corresponding to outcomes of random variable

𝑃 𝑋 = 1 = 𝑃 1,2 = 𝑝 1 + 𝑝 2 =
2
6
=
1
3

𝑃 𝑋 = 2 = 𝑃 4 = 𝑝 4 =
1
6

𝑃 𝑋 = 3 = 𝑃 3,6 = 𝑝 3 + 𝑝 6 =
2
6
=
1
3

𝑃 𝑋 = 5 = 𝑃 5 = 𝑝 5 =
1
6

NOTE:
𝑃 𝑋 = 1 + 𝑃 𝑋 = 2 + 𝑃 𝑋 = 3 + 𝑃 𝑋 = 5 = 1

Probability Theory Overview
Thus, we get an auxiliary probability space!
Sample space

outcomes of random variable 𝑋, e.g., {1,2,3,5}
Probability distribution

probability of outcomes, e.g.,

𝑝 1 = 𝑝 3 =
1
3
, 𝑝 2 = 𝑝 5 =

1
6

ℝ
1

2

3

6Ω

𝑋

4

5 1
2
3
4
5

Probability Theory Overview

ℝ𝜔1

𝜔2

𝜔3

𝜔𝑛
Ω

⋮

𝑋

Start with a
probability
distribution

here

Pass it
“through” a

random
variable

Get a
probability
distribution

here

distribution of 𝑋

Probability Theory Overview
Expected value of a random variable 𝑋 is defined as

𝐸 𝑋 = σ𝜔∈Ω𝑋 𝜔 𝑝(𝜔)
Equivalently,

𝐸 𝑋 = σ𝑖 𝑖 𝑃(𝑋 = 𝑖)
Exercise: prove the equivalence

Observe that second definition does not require you to know the original
distribution, only distribution of 𝑋

Probability Theory Pitfalls
Probability theory models something very natural – chance!

It is easy to think that you sort-of-understand it, and dive into problems right
away, start calculating answers, and getting results (sometimes even correct).

Without understanding basic definitions you won’t get very far – even beginner
problems would seem incomprehensible.

You should be very clear what are probability spaces, events, random variables,
expectations, etc.

To keep yourself in check, get into habit of asking yourself “What is the sample
space? Is it a set of numbers/names/dates/apples? What is the size of the
sample space? What is the distribution? Is it uniform?”

Examples of Pitfalls
Events have probabilities!

Random variables have expectations!

“Expectation of event A” does not make sense! Never say it!

“Probability of random variable X” does not make sense! Never say it!

Probabilities can never be negative!

Probabilities can never be greater than 1!

Things You Should Know to Understand
and Analyze Randomized Algorithms
Conditional probabilities

Independent random variables

Conditional expectations

Law of complete probability

Moments of random variables

Standard discrete distr: uniform, Bernoulli, Binomial, Geometric, Poisson, …

Standard continuous distr: uniform, Gaussian, exponential, …

…

Three Pillars of Probability Theory
Linearity of Expectation Union Bound Chernoff Bound

Deceptively simple!
Incredibly powerful!
If you understand and practice these techniques, you would be able to solve
MANY MANY MANY MANY MANY probability theory problems!

Back to Randomized Algorithms

ALGORITHM
INPUT

RANDOMNESS

Can think of randomness as an infinite supply of random bits, e.g.,
1101000010100011 1111101010000001011111001100111010110101…

Algorithm accesses them sequentially, so if it runs in finite time, it only uses
finitely many of the bits.

Polytime algorithm uses polynomially many random bits

OUTPUT
DISTRIBUTION

Randomness in Randomized Algorithms
Suppose that on input 𝑥 your algorithm uses exactly 𝑁 random bits (WLOG)

What is the sample space?

Ω = {0,1}𝑁

What is the probability distribution?

𝑝 is uniform, i.e., for any random string 𝑟 ∈ Ω we have 𝑝 𝑟 = 1/2𝑁

Randomness in Randomized Algorithms
But why do we only allow independent coin flips?

What if our algorithm requires a different distribution?

Turns out you can create samples from most other distributions (either exactly
or approximately) we care about

For example, if you wanted to get a uniform random number between [0,1] to 5
bits of accuracy, you can take 5 coin flips, e.g., 01101, and put a zero followed by
dot after it:

0.01101 – interpret it as a binary fractional number

Randomness in Randomized Algorithms
Another example:

Start with a probability space of 𝑛 flips of a fair coin

Define a random variable 𝑋 to be the number of times heads come up

Then 𝑋 has binomial distribution

𝑋 can take on values 0, 1, 2, …., 𝑛

For 𝑘 ∈ {0,1,… , 𝑛} we have 𝑃 𝑋 = 𝑘 = 𝑛
𝑘 2−𝑛

Suppose in designing an algorithm you need a sample from binomial distribution
with parameter 𝑛 = 5
Take 5 random bits from the random string and add them together

Randomness in Randomized Algorithms
More generally, any random variable whose cumulative distribution function is
efficiently invertible can be efficiently sampled

Bottom line:

with just uniform random bits we can approximately simulate almost all other
distributions we care about

Random Variables of Interest

ALGORITHM
INPUT

RANDOMNESS

𝑥 denotes input, 𝑟 denotes a random string

Main random variables of interest:

𝑇(𝑥, 𝑟) = runtime of your algorithm on input x with randomness r

𝐶(𝑥, 𝑟) = 1, if your algorithm gives the right output on input x when it uses
randomness r; 0, otherwise.

OUTPUT
DISTRIBUTION

Desired Properties
𝑇(𝑥, 𝑟) = runtime of your algorithm on input x with randomness r

𝐶(𝑥, 𝑟) = 1, if your algorithm gives the right output on input x when it uses
randomness r; 0, otherwise.

(1) Runtime

𝑇 𝑥, 𝑟 ≤ 𝑝𝑜𝑙𝑦(𝑥) for every input 𝑥 and random string 𝑟

Weaker requirement: 𝐸𝑟 𝑇 𝑥, 𝑟 ≤ 𝑝𝑜𝑙𝑦(𝑥) for every input 𝑥

(2) Probability of success

𝑃𝑟(𝐶 𝑥, 𝑟 = 1) ≥ 9/10 for every input 𝑥

Monte Carlo vs Las Vegas Algorithms
Monte Carlo algorithms always run for a small number of steps (e.g., 𝑇 𝑥, 𝑟 ≤
𝑝𝑜𝑙𝑦(𝑥)) and produce a correct answer with high enough probability (e.g.,
𝑃𝑟(𝐶 𝑥, 𝑟 = 1) ≥ 9/10).

Las Vegas algorithms run for expected small number of steps (e.g.,
𝐸𝑟 𝑇 𝑥, 𝑟 ≤ 𝑝𝑜𝑙𝑦(𝑥)), but always produce a correct answer (i.e.,
𝑃𝑟 𝐶 𝑥, 𝑟 = 1 = 1).

Thus, Las Vegas algorithms for some values of randomness might run for much
longer time.

Monte Carlo vs Las Vegas
Monte Carlo algos
◦ Also called an algo with 2-sided error
◦ Probability of success in the definition is not important, as long as it is 1

2
+ 𝜀

for some constant 𝜀 > 0

Las Vegas algos
◦ Also called an algo with 0-sided error

Example of a Las Vegas Algorithm
Quicksort

(1) to sort an array of elements, pick a random number in the array - pivot

(2) put all numbers less than the pivot in one array, all numbers bigger than the
pivot in another array

(3) recursively sort the two arrays

Note that

Quicksort always produces the right answer

Its expected runtime is 𝑂(𝑛 log 𝑛)

Sometimes it might run for Ω(𝑛2) steps if it was unlucky in pivot selections

First Serious Example: Polynomial
Identity Testing
Polynomial of degree 𝑑 in one variable 𝑥 is a function of the form

𝑝 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 +⋯+ 𝑎1𝑥 + 𝑎0
where 𝑎𝑖 ∈ ℚ (for example) and 𝑎𝑑 ≠ 0

Polynomial Identity Testing
Two polynomials 𝑝(𝑥) and 𝑞(𝑥) are equal if all the coefficients are the same

Sometimes, a polynomial is not represented in the above form right away

A polynomial could be represented by an implicit formula, e.g.:

𝑞 𝑥 = 𝑥 − 3 10𝑥 + 5 3𝑥5 − 3𝑥 + 8 … 𝑥 + 48 + (𝑥27 − 3) 2𝑥 − 8
We know it is a polynomial, but without opening up the brackets, we don’t know
its coefficients! There could be nontrivial cancellations.

Note that when 𝑞(𝑥) is given implicitly as above, its degree is at most the size of
such an implicit representation. In what follows, we assume 𝑑 is both a bound
on degree and size of representation.

Polynomial Identity Testing
Given two polynomials 𝑝(𝑥) and 𝑞(𝑥) in such an implicit form, we would like to
test if they are the same polynomial

Suppose that the degree of each polynomial is at most 𝑑
We could open up the brackets and simplify the polynomials, but it is too much
work – fast and complicated algorithms for doing this require time Ω(𝑑 log 𝑑)
Can we do better?

Can we check if two polynomials given implicitly are the same in time 𝑂(𝑑) and
without opening up the brackets?

Polynomial Identity Testing to Polynomial
Zero Testing
Instead of checking 𝑝(𝑥) = 𝑞(𝑥) we can check if 𝑝(𝑥) − 𝑞(𝑥) = 0.

If 𝑝(𝑥) and 𝑞(𝑥) are degree at most 𝑑 polynomials then 𝑝(𝑥) − 𝑞(𝑥) is also
degree at most 𝑑 polynomial.

So, now the problem becomes

Given a polynomial 𝑝(𝑥) of degree at most 𝑑 represented implicitly, check if it is
the identically 0 polynomial without opening up the brackets and simplifying all
the coefficients

Polynomial Zero Testing
Problem: given a polynomial 𝑝(𝑥) of degree at most 𝑑 represented implicitly,
check if it is the identically 0 polynomial without opening up the brackets and
simplifying all the coefficients

Key observations:

(1) polynomial 𝑝(𝑥) of degree 𝑑 has at most 𝑑 roots – those numbers where the
polynomial evaluates to zero

(2) evaluating a polynomial of degree at most 𝑑 can be done with 𝑂(𝑑) basic
arithmetic operations (addition, subtraction, multiplication) – Exercise! (recall
that 𝑑 is both the bound on the implicit representation and on the degree)

Randomized Polynomial Zero Testing
Problem: given a polynomial 𝑝(𝑥) of degree at most 𝑑 represented implicitly,
check if it is the identically 0 polynomial without opening up the brackets and
simplifying all the coefficients

Randomized algorithm:
◦ Pick a number 𝑟 uniformly at random from 1,2,… , 10𝑑
◦ Evaluate 𝑝(𝑟). If it returns non-zero, output “NON-ZERO POLY”; otherwise, output

“ZERO POLY”

Analysis of Randomized Zero Testing Algo
Runtime: 𝑂(𝑑) – always

Correctness:

if 𝑝(𝑥) is the zero polynomial, it always evaluates to zero, so our algorithm is
always correct!

If 𝑝(𝑥) is non-zero, it has at most 𝑑 roots, so at most 𝑑 out of 10𝑑 first numbers
evaluate to zero. With probability 9/10 we select a number on which 𝑝(𝑥) does
not evaluate to zero, so we output the right answer with probability 9/10

This is a Monte Carlo algorithm with one-sided error.

Error probability can be boosted by either repetition or selecting a bigger range

Boosting the Probability of Success
Repeat the algorithm 𝑘 times with fresh randomness

Output “ZERO” only if all runs output “ZERO”

Probability of success?

If 𝑝(𝑥) is the zero polynomial, we always output “ZERO”

If 𝑝(𝑥) is not the zero polynomial, we make an error if and only if ALL runs make
an error. Since runs are independent, probabilities multiply:

Probability that a single run makes an error is 1/10, then the probability that all
runs make errors is 1/10𝑘.

Cosmic Rays
From Wiki:

“Cosmic rays are high-energy radiation, mainly originating outside the Solar
System and even from distant galaxies. Upon impact with the Earth's
atmosphere, cosmic rays can produce showers of secondary particles that
sometimes reach the surface.”

When they hit a RAM module on your laptop they can corrupt main memory

Depending on where cosmic rays hit, your program can crash, or simply continue
execution with erroneous data

Boosting the Probability of Success
If your program runs for 1 minute and occupies 20 MB of RAM, IBM estimates
that there is roughly 1/107 chance that cosmic rays will hit the RAM module and
introduce errors to your program.

If you run the repeated zero polynomial testing algorithm for 𝑘 = 10 iterations,
the probability of error is 1/1010, but it still runs in 10 𝑂(𝑑) = 𝑂(𝑑) time.

For all practical purposes, the result of this randomized algorithm is as
dependable as any other computation that you run on your computer

BUT the algorithm is super simple and super efficient!

Extending the Algorithm to Multiple Vars
Example: polynomial in 3 variables 𝑥1, 𝑥2, 𝑥3

𝑝 𝑥1, 𝑥2, 𝑥3 = 10𝑥13𝑥24𝑥3 + 8𝑥1𝑥2𝑥34 − 𝑥1𝑥3 + 𝑥2 − 6
Total degree is 8 (maximum sum of degrees in a single term)

More generally, we will consider polynomials in many variables

These polynomials can also be represented implicitly

We want to see when two polynomials in several variables are the same

Alternatively, when a single polynomial in several variables is the zero
polynomial

Nontrivial Example
Consider a square 𝑛 × 𝑛 matrix whose entries are variables 𝑥𝑖𝑗:

𝑀 =
𝑥11 ⋯ 𝑥1𝑛
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑛

The determinant of M is defined as follows:

det 𝑀 = σ𝜎(−1)𝑠𝑔𝑛(𝜎)𝑥1𝜎(1)𝑥2𝜎(2) … 𝑥𝑛𝜎(𝑛)
Where 𝜎 ranges over all permutations of {1,2,… , 𝑛}

Thus, the determinant is a polynomial in 𝑛2 variables of total degree 𝑛 and with
𝑛! terms

Nontrivial Example
det 𝑀 = σ𝜎(−1)𝑠𝑔𝑛(𝜎)𝑥1𝜎(1)𝑥2𝜎(2) …𝑥𝑛𝜎(𝑛)

𝑛2 variables, total degree 𝑛, 𝑛! Terms

For 𝑛 = 100, there is not enough material in the observable universe to create
the paper necessary to write down this polynomial explicitly

Nonetheless, for a particular setting of values to variables 𝑥𝑖𝑗 we can evaluate
this polynomial efficiently using Gaussian Elimination!

This is an implicit representation of a polynomial: evaluation is quick, but we
cannot expand the polynomial coefficients

Multivariate Polynomial Zero Testing
Polynomial Zero Testing with one variable required a bound on the number of
roots of a polynomial of degree n

Thus, we need a generalization of such a bound to several variables and total
degree

Schwartz-Zippel Lemma. Let 𝑞(𝑥1, 𝑥2, … , 𝑥𝑛) be a non-zero multivariate
polynomial of total degree 𝑑 over ℚ. Let 𝑆 be a finite subset of ℚ, and let
𝑟1, 𝑟2, … , 𝑟𝑛 be chosen independently and uniformly at random from 𝑆. Then

𝑃(𝑞 𝑟1, 𝑟2, … , 𝑟𝑛 = 0) ≤ 𝑑
|𝑆|

Multivariate Polynomial Zero Testing
INPUT: polynomial 𝑞 on 𝑛 variables of total degree 𝑑 given implicitly

OUTPUT: yes if 𝑞 is identically zero polynomial, no otherwise

Algorithm:
Pick 𝑟1, 𝑟2, … , 𝑟𝑛 uniformly at random from {1,2,… , 10𝑑}
Output yes if and only if 𝑞 𝑟1, 𝑟2, … , 𝑟𝑛 = 0
Analysis:
If 𝑞 is zero then we always output yes

If 𝑞 is nonzero, by Schwarz-Zippel, we output no with probability at least 9/10

Multivariate Polynomial Zero Testing
Algorithm:
Pick 𝑟1, 𝑟2, … , 𝑟𝑛 uniformly at random from {1,2,… , 10𝑑}
Output yes if and only if 𝑞 𝑟1, 𝑟2, … , 𝑟𝑛 = 0

As before, we can boost the probability of success to be almost 1 by repetition

Example of a problem for which the best known algorithm is randomized

Can this algorithm be derandomized? Huge open question in theoretical CS

Interesting Application
The Vandermonde matrix 𝑀 𝑥1, 𝑥2, … , 𝑥𝑛

1 𝑥1 𝑥12 … 𝑥1𝑛

1 𝑥2 𝑥22
⋮ ⋮ ⋮
1 𝑥𝑛 𝑥𝑛2

…
⋱
…

𝑥2𝑛
⋮
𝑥𝑛𝑛

Vandermonde’s identity: det 𝑀 = ς𝑗<𝑖(𝑥𝑖 − 𝑥𝑗) (EXERCISE – prove it!)

Vandermonde’s Identity

det

1 𝑥1 𝑥12 … 𝑥1𝑛

1 𝑥2 𝑥22
⋮ ⋮ ⋮
1 𝑥𝑛 𝑥𝑛2

…
⋱
…

𝑥2𝑛
⋮
𝑥𝑛𝑛

= ς𝑗<𝑖(𝑥𝑖 − 𝑥𝑗)

This is polynomial identity testing!

Cannot write down and simplify the poly on the left – it has 𝑛! Terms

BUT can evaluate it efficiently using Gaussian elimination

Thus, can use our algo to verify equality of polynomials with high probability

The difference with a mathematical proof is that in pure math we are not
satisfied with knowing that a theorem holds with 99% certainty :)

