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Introduction

Course Organization: See General Course Info on course web site:
http://www.cs.toronto.edu/∼bor/373f17/

Note: In general we will not post lecture slides and, moreover, we
will not be relying on lecture slides but mainly relying on the
white/black board. There are (at least) three excellent texts for
material in this course. We are using CLRS, DPV, and KT. There
will also be additional material that I will post. I am hoping for a
more interactive class with everyone reading the suggested sections
of these three texts and recommended additional material.

TODO today: We need to assign students to tutorials. We will initially
use three tutorial sections assigning students by birthdays: 1-15th of each
month (BA 1190), 16-23 (BA 2139) and 24-31 (BA 2145)
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What is CSC373?

CSC373 is a “compromise course”. Namely, in the desire to give
students more choice, there are only two specific courses which are
required for all CS specialists. Namely we require one “systems
course” CSC369 and one “theory course” CSC373 whereas in the past
we required both an algorithms course and a complexity course. Our
solution was to make CSC373 mainly an algorithms course, but to
also include an introduction to complexity theory. DCS also provides
a 4th year complexity course CSC465 as well as a more advanced
undergraduate algorithms course CSC473.

The complexity part of the course relies on suitable “reductions” (i.e.,
converting an instance of a problem A to an instance of problem B).
As such, since reductions are algorithms, this is not an unnatural
combination. The main difference is that we generally use reductions
in complexity theory to provide evidence that something is difficult
(rather than use it to derive new algorithms). More on this later.
Indeed most algorithm textbooks include NP-completeness.
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The dividing line between efficiently computable and
NP hardness

Many closely related problems are such that:

One problem has an efficient algorithm (e.g., polynomial time) while a
variant becomes (according to “well accepted” conjectures) difficult to

compute (e.g. requiring exponential time complexity).

For example:
I Interval Scheduling vs Job Interval Scheduling
I Minimum Spanning Tree (MST) vs Bounded degree MST
I MST vs Steiner tree
I Shortest paths vs Longest (simple) paths
I 2-Colourability vs 3-Colourability

Our focus is worst case analysis vs peformance “in practice”

4 / 1



Comments and disclaimers on the course
perspective; what this course is and is not about

As this is a required basic course, I am following the perspective of
the standard CS undergraduate texts. However, I may sometimes
introduce ideas relating to my current research interests.

Most CS undergraduate algorithm courses/texts study the high level
presentation of algorithms within the framework of basic algorithmic
paradigms that can be applied in a wide variety of contexts.

Moreover, the perspective is one of studying “worst case”
(adversarial) input instances.

Why not study “average case analysis”

A more applied perspective (i.e., an “algorithmic engineering” course
that say discusses implementations of algorithms in industrial
applications) is beyond the scope of this course.
Why isn’t such a course offered?
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What this course is and is not about (continued)

Our focus is on deterministic algorithms for discrete combinatorial
(and some numeric/algebraic) type problems which we study with
respect to sequential time within a von Neumann RAM
computational model.

Even within theoretical CS, there are many focused courses and texts
for particular subfields. At an advanced undergraduate or graduate
level, we might have entire courses on for example, randomized
algorithms, stochastic (i.e., “average case”) analysis, approximation
algorithms, linear programming (and more generally mathematical
programming), online algorithms, parallel algorithms, streaming
algorithms, sublinear time algorithms, spectral algorithms (and more,
generally algebraic algorithms), geometric algorithms, continuous
methods for discrte problems, genetic algorithms, etc.
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The growing importance of TCS

Its core questions (e.g. P vs NP) have gained prominence in both the
intellectual and popular arenas.

There are relatively recent breakthroughs in faster algorithms and
scalable parallelizable data structures and algorithms, complexity
based cryptography, approximate combinatorial optimization,
pseudo-randomness, coding theory,. . .

TCS has expanded its frontiers.
Many fields rely increasingly on the algorithms and abstractions of
TCS, creating new areas of inquiry within theory and new fields at the
boundaries between TCS and disciplines such as:

I computational biology
I algorithmic game theory
I algorithmic aspects of social networks
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End of introductory comments

I recognize some (many, most?) students may be attending only because
it is required. You may also be wondering “will I ever use any of the
material in this course”? or “Why is this course required”?

How many share this sentiment?

Our goal is to instill some more analytical, precise ways of thinking and
this goes beyond the specific course content. The Design and Analysis of
Algorithms is a required course is almost all North American CS programs.
(It probably is also required throughout the world but I know more about
North America.) So the belief that this kind of thinking is useful and
important is widely accepted. I hope I can make it seem meaningful to you
now and not just maybe only 10 years from now.
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Tentative set of topics)

Introduction and Motivation

Divide and Conquer (1 week)

Greedy algorithms (1-2 weeks)

Dynamic Programming (1-2 weeks)

Network flows; matching (1-2 weeks)

NP and NP-completeness; self reduction (2-3 weeks)

Approximation algorithms (to be discussed throughout term)

Linear Programming; IP/LP rounding (2 weeks)

Local search (1 week)

Randomized algorithms (1 week)
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Outline for the course content in Week 1

We will start the course with divide and conquer, a basic algoithmic
paradigm that you are familiar with from say CSC236/CSC240, and
CSC263/CSC265.
The texts contain many examples of divide and conquer as well as how to
solve certain types of recurrences which again you have already seen in
previous courses. So I do not plan to spend too much time on divide and
conquer.
Here is what we will be doing:
(1) An informal statement of the divide and conquer paradigm
Note: Like other paradigms we will consider, we do not present a
precise definition for divide and conquer. For our purposes (and
that of the texts), it is a matter of “you know it when you see it”.
But if we wanted to say prove that a given problem could not be
solved efficiently by a divide and conquer algorithm we would need
a precise model.
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Outline for Week 1 continued

(2) We will choose a few of the many examples taken mainly from the
examples in texts:

CLRS: maximum subarray, Strassen’s matrix multiplication, quicksort,
median and selection in sorted list, dynamic multithreading, the FFT
algorithm, closest pair in R2, sparse cuts in graphs

KT: merge sort, counting imversions, closest pair in R2, integer
multiplication, FFT, quicksort, medians and selection

(3) The typical recurrences
(4) Comments on choosing the right abstraction of the problem.
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The divide and conquer paradigm

As roughly stated in DPV chapter 2, the divide and conquer paradigm
solves a problem by:

1 Dividing the problem into smaller subproblems of the same type
Note: In some cases we have to generalize the given problem so as to
lend itself to the paradigm. We will also see this in the dynamic
programming paradigm.

2 Recursively solving these subproblems

3 Combining the results from the subproblems

12 / 1



Counting inversions from Kevin Wayne’s slides

20

Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count]  A and B are sorted.

Post-condition.  [Sort-and-Count]  L is sorted.

Sort-and-Count(L) {

   if list L has one element

      return 0 and the list L

   Divide the list into two halves A and B

   (rA, A) ← Sort-and-Count(A)

   (rB, B) ← Sort-and-Count(B)

   (rB, L) ← Merge-and-Count(A, B)

   return r = rA + rB + r and the sorted list L

}

Figure : Counting-inversions from Kevin Wayne’s slides
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Closest pair in R2 from Kevin Wayne’s slides

33

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

   Compute separation line L such that half the points

   are on one side and half on the other side.

   δ1 = Closest-Pair(left half)
   δ2 = Closest-Pair(right half)
   δ  = min(δ1, δ2)

   Delete all points further than δ from separation line L

   Sort remaining points by y-coordinate.

   Scan points in y-order and compare distance between

   each point and next 11 neighbors. If any of these

   distances is less than δ, update δ.

   return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Figure : Closest pairs from Kevin Wayne’s slides
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Recurrences describing divide and conquer
algorithms

From previous courses (and previous examples), we have seen the
recurrences describing the divide and conquer algorithms for counting
inversions and closest points in R2. Namely
T (n) = 2T (n/2) + O(n) and T (1) = O(1) so that
T (n) = O(n log n).

The next two divide and couquer examples examples result in
recurrences of the form T (n) = aT (n/b) + f (n) for a > b where
f (n) = O(nlogb a−ε) for some ε > 0. so that T (n) = nlogb a.

These are all cases of the so called master theorem
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The master theorem

Here is the master theorem as it appears in CLRS

94 Chapter 4 Divide-and-Conquer

The recurrence (4.20) describes the running time of an algorithm that divides a
problem of size n into a subproblems, each of size n=b, where a and b are positive
constants. The a subproblems are solved recursively, each in time T .n=b/. The
function f .n/ encompasses the cost of dividing the problem and combining the
results of the subproblems. For example, the recurrence arising from Strassen’s
algorithm has a D 7, b D 2, and f .n/ D ‚.n2/.

As a matter of technical correctness, the recurrence is not actually well defined,
because n=b might not be an integer. Replacing each of the a terms T .n=b/ with
either T .bn=bc/ or T .dn=be/ will not affect the asymptotic behavior of the recur-
rence, however. (We will prove this assertion in the next section.) We normally
find it convenient, therefore, to omit the floor and ceiling functions when writing
divide-and-conquer recurrences of this form.

The master theorem
The master method depends on the following theorem.

Theorem 4.1 (Master theorem)
Let a ! 1 and b > 1 be constants, let f .n/ be a function, and let T .n/ be defined
on the nonnegative integers by the recurrence
T .n/ D aT .n=b/C f .n/ ;

where we interpret n=b to mean either bn=bc or dn=be. Then T .n/ has the follow-
ing asymptotic bounds:
1. If f .n/ D O.nlogb a!!/ for some constant ! > 0, then T .n/ D ‚.nlogb a/.
2. If f .n/ D ‚.nlogb a/, then T .n/ D ‚.nlogb a lg n/.
3. If f .n/ D ".nlogb aC!/ for some constant ! > 0, and if af .n=b/ " cf .n/ for

some constant c < 1 and all sufficiently large n, then T .n/ D ‚.f .n//.

Before applying the master theorem to some examples, let’s spend a moment
trying to understand what it says. In each of the three cases, we compare the
function f .n/ with the function nlogb a. Intuitively, the larger of the two functions
determines the solution to the recurrence. If, as in case 1, the function nlogb a is the
larger, then the solution is T .n/ D ‚.nlogb a/. If, as in case 3, the function f .n/
is the larger, then the solution is T .n/ D ‚.f .n//. If, as in case 2, the two func-
tions are the same size, we multiply by a logarithmic factor, and the solution is
T .n/ D ‚.nlogb a lg n/ D ‚.f .n/ lg n/.

Beyond this intuition, you need to be aware of some technicalities. In the first
case, not only must f .n/ be smaller than nlogb a, it must be polynomially smaller.

16 / 1



Karatsuba’s interger multiplication from Kevin
Wayne’s slides

10

To multiply two n-bit integers a and b:

 Add two ½n bit integers.

 Multiply three ½n-bit integers, recursively.

 Add, subtract, and shift to obtain result.

Theorem.  [Karatsuba-Ofman 1962]  Can multiply two n-bit integers

in O(n1.585) bit operations.

Karatsuba Multiplication

  

! 

T (n) " T n /2# $( ) + T n /2% &( ) + T 1+ n /2% &( )
recursive calls

1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 
+ '(n)

add, subtract, shift

1 2 4 3 4 
( T (n)  =  O(n

lg 3
)  =  O(n

1.585
)

! 

a = 2
n / 2

" a1  +  a0

b = 2
n / 2

"b1  +  b0

ab = 2
n
" a1b1  + 2

n / 2
" a1b0 + a0b1( ) + a0b0

= 2
n
" a1b1  + 2

n / 2
" (a1 + a0 ) (b1 +b0 )  # a1b1 # a0b0( ) + a0b0

1 2 1 33
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Strassen’s n × n fast matrix multiplication

This algorithm is described in all the texts. While there is some question
as to when fast matrix multiplicaton (Strassen’s and subsequent
asymptotically faster algorithms) has practical application, it plays a
seminal role in theoretical computer science.

The standard method to multiply two n× n matrices requires O(n3) scalar
(+, ·) operations. There were conjectures (and a published false proof!)
that any algorithm for matrix multipication requires O(n3)

Why would you make such a conjecture? And why is this such a seminal
result?

Theorem (Strassen): Matrix multiplcation (over any ring) can be
realized in O(nlog2 7) scalar operations.

Furthermore, Strassen shows that matrix inversion for a non-singluar
matrix reduces (and is equivalent) to matrix multiplication.
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Strassen’s matrix multiplication continued

The high level idea is conceptually simple. The method is based on
Strassen’s insightful (and not simple) discovery that 2× 2 matrix
multiplication can be realized in 7 (not 8) non-commutative
multiplications and 18 additions. (Note: the number of additions will only
impact the hidden constant in the “big O” notation and not the matrix
mutliplication exponent.)

The insights into the 2× 2 method are beyond the scope of this course so
lets just see how the n × n result follows. Without loss of generality, let
n = 2k for some k .

76 Chapter 4 Divide-and-Conquer

for loop of lines 4–7 computes each of the entries cij , for each column j . Line 5
initializes cij to 0 as we start computing the sum given in equation (4.8), and each
iteration of the for loop of lines 6–7 adds in one more term of equation (4.8).

Because each of the triply-nested for loops runs exactly n iterations, and each
execution of line 7 takes constant time, the SQUARE-MATRIX-MULTIPLY proce-
dure takes ‚.n3/ time.

You might at first think that any matrix multiplication algorithm must take !.n3/
time, since the natural definition of matrix multiplication requires that many mul-
tiplications. You would be incorrect, however: we have a way to multiply matrices
in o.n3/ time. In this section, we shall see Strassen’s remarkable recursive algo-
rithm for multiplying n ! n matrices. It runs in ‚.nlg 7/ time, which we shall show
in Section 4.5. Since lg 7 lies between 2:80 and 2:81, Strassen’s algorithm runs in
O.n2:81/ time, which is asymptotically better than the simple SQUARE-MATRIX-
MULTIPLY procedure.

A simple divide-and-conquer algorithm
To keep things simple, when we use a divide-and-conquer algorithm to compute
the matrix product C D A " B , we assume that n is an exact power of 2 in each of
the n ! n matrices. We make this assumption because in each divide step, we will
divide n ! n matrices into four n=2 ! n=2 matrices, and by assuming that n is an
exact power of 2, we are guaranteed that as long as n # 2, the dimension n=2 is an
integer.

Suppose that we partition each of A, B , and C into four n=2 ! n=2 matrices

A D
!

A11 A12

A21 A22

"
; B D

!
B11 B12

B21 B22

"
; C D

!
C11 C12

C21 C22

"
; (4.9)

so that we rewrite the equation C D A " B as
!

C11 C12

C21 C22

"
D

!
A11 A12

A21 A22

"
"
!

B11 B12

B21 B22

"
: (4.10)

Equation (4.10) corresponds to the four equations
C11 D A11 " B11 C A12 " B21 ; (4.11)
C12 D A11 " B12 C A12 " B22 ; (4.12)
C21 D A21 " B11 C A22 " B21 ; (4.13)
C22 D A21 " B12 C A22 " B22 : (4.14)
Each of these four equations specifies two multiplications of n=2 ! n=2 matrices
and the addition of their n=2 ! n=2 products. We can use these equations to create
a straightforward, recursive, divide-and-conquer algorithm:

Figure : Viewing an n × n matrix as four n/2× n/2 matrices
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and the addition of their n=2 ! n=2 products. We can use these equations to create
a straightforward, recursive, divide-and-conquer algorithm:

Figure : Viewing an n × n matrix as four n/2× n/2 matrices
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Strassen’s matrix multiplication continued

Since matrices are a non commutative ring (i.e., matrix multiplication is
not commutative), the 2× 2 result can be applied so that an n × n
mutilpication can be realized in 7 n/2× n/2 matrix multiplications (and
18 matrix additions).

Since matrix addition uses only O(n2) scalar operations, the number T (n)
of scalar opeations is determined by the recurrence :

T (n) = 7 ∗ T (n/2) + O(n2) with T (1) = 1.

This implies the stated result that T (n) = O(nlog2 7).

20 / 1



Strassen’s matrix multiplication continued

Since matrices are a non commutative ring (i.e., matrix multiplication is
not commutative), the 2× 2 result can be applied so that an n × n
mutilpication can be realized in 7 n/2× n/2 matrix multiplications (and
18 matrix additions).

Since matrix addition uses only O(n2) scalar operations, the number T (n)
of scalar opeations is determined by the recurrence :

T (n) = 7 ∗ T (n/2) + O(n2) with T (1) = 1.

This implies the stated result that T (n) = O(nlog2 7).

20 / 1



Other examples of the master theorem

There are a few other cases of the master theorem that often occur. We
will assume that T (1) = O(1).

The recurrence T (n) = 2T (n/2) + O(1) and T (1) = O(1) implies
T (n) = O(n)
A not so useful example: finidng the maximum element in an
unsorted list.
Somewhat perhaps more useful is to find the minimum and maximum
element in d3n2 e comparisons.

The recurrence T (n) = T (n/b) + O(n) for b > 1 implies
T (n) = O(n).
For an example, see exercise 4-5 in CLRS (page 109). Later we will
discuss how to find the median element in an unsorted list in O(n).

The recurrence T (n) = T (n/b) + O(1) for b > 1 implies
T (n) = O(log n).
The standard binary search in a sorted list is a typical example.
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What has to be proven?

In general, when analyzing an algorithm, we have to do two basic things:

1 Prove coorectnesss; that is, that the algorithm realizes the required
problem specification. For example, for Strassen’s matrix
multiplication, it must be shown that the output matrix is the
product of the two input matrices. For the closest pair problem we
need to prove that the output is the closest pair of points; that is,
that an optimal solution was obtained. Later, when considering
approximation algorithms, we need to prove that the algorithm
produces a feasible solution within some factor of an optimal solution.

2 Analyze the complexity of the algorithm in terms of the input
parameters of the problem. For us, we will mainly be interested in the
(sequential) time of the algorithm as a function T () of the “size” of
the input representation. For example, in n × n matrix multiplication,
the usual measure of “size” is the size n of the matrices. But if were
considering the multiplication of Am,n · Bn,p, we would want to
analyze the time complexity T (m, n, p).
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More on compelxity analysis

For divide and conquer, we analyze the complexity by establishing a
recurrence and then solving that recurrence. For us, the recurrences
are usually solved by the master theorem. In fact, if we know the
desired time bound, we can sometimes guess a suitable recurrence
which may suggest a framework for a possible solution.
There are other important complexity measures besides sequential
time, including parallel time (if we are in a model of parallel
computation) and memory space.
For much of our algorithm analysis (as in all the previous examples
except integer multiplication), we are assumiung a random access
model and counting the number of machine operations (e.g.,
comparisons, arithmetic operations) ignoring representation issues
(e.g., the number of bits or digits in the matrix entries, or the
representation of the “real numbers” in the closest pair problem). For
interger multiplcation, we measured the “size” of the input
representation in terms of the number of bits or digits of the two
numbers.
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Looking ahead to complexity theory

When we get to complexity theory, the standard measure is the nunber of
bits (or digits) in the representation of the inputs. In particular, when
discussing the “P vs NP issue and NP completeness, we assume that we
have string (o0ver some finite alphabet) representation of the inputs. (We
will not usually have to worry about the size of the output.)

This makes sense as for example, in integer factoring (the basis for RSA
cryptography) it would not make good sense to measure complexity of the
value x of the number being factored but rather we need to measure
compexity as a function of the number of bits (or digits) to represent x .
Why?

This distinction (between the value of say an integer and its representation
length) will also become important when we discuss the knapsack problem
in the context of dynamic programming.

24 / 1



Looking ahead to complexity theory

When we get to complexity theory, the standard measure is the nunber of
bits (or digits) in the representation of the inputs. In particular, when
discussing the “P vs NP issue and NP completeness, we assume that we
have string (o0ver some finite alphabet) representation of the inputs. (We
will not usually have to worry about the size of the output.)

This makes sense as for example, in integer factoring (the basis for RSA
cryptography) it would not make good sense to measure complexity of the
value x of the number being factored but rather we need to measure
compexity as a function of the number of bits (or digits) to represent x .
Why?

This distinction (between the value of say an integer and its representation
length) will also become important when we discuss the knapsack problem
in the context of dynamic programming.

24 / 1


