5. DiviDE AND CONQUER |

» mergesort

» counting inversions

» closest pair of points

» randomized quicksort
» median and selection

\ , : V g
‘*\\\ JON KLEINBERG - EVA TARDOS

\
[\

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 7/29/17 4:28 PM

5. DivIDE AND CONQUER

Divide-and-conquer paradigm

Divide-and-conquer.
» Divide up problem into several subproblems.
» Solve each subproblem recursively.
* Combine solutions to subproblems into overall solution.

Most common usage.
* Divide problem of size n into two subproblems (of the same kind)
of size n/2 in linear time.
» Solve two subproblems recursively.
» Combine two solutions into overall solution in linear time.

Consequence.
* Brute force: O®?).
* Divide-and-conquer: ©(n log n).

attributed to Julius Caesar

Sorting problem

» mergesort

v

| Ignmhm Jesign

~ JON KLEINBERG - EVA TARDOS

Problem. Given a list of n elements from a totally-ordered universe,
rearrange them in ascending order.

g
1 '

Born In The U.S.
Bruce Springsteen

d Of Night

Sorting applications

Obvious applications.
» Organize an MP3 library.
» Display Google PageRank results.
+ List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.
« ldentify statistical outliers.
+ Binary search in a database.
» Remove duplicates in a mailing list.

Non-obvious applications.
+ Convex hull.
» Closest pair of points.
« Interval scheduling / interval partitioning.
* Minimum spanning trees (Kruskal’s algorithm).

» Scheduling to minimize maximum lateness or average completion time.

Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
* Scan A and B from left to right.
* Compare g; and b;.
* If a; = b;, append a; to C (no larger than any remaining element in B).
* If a; > b;, append b; to C (smaller than every remaining element in A).

sorted list A sorted list B

merge to form sorted list C

2 3 7 10 11

Mergesort

» Recursively sort left half.
» Recursively sort right half.
» Merge two halves to make sorted whole.

First Draft

ofa
A L G O R I T H M S Report on the
EDVAC

John von Neumann

input

sort left half

A G L (0] R

sort right half

merge results

A G H | L M o R S T

A useful recurrence relation

Def. T(n) = max number of compares to mergesort a list of size < n.
Note. T(n) is monotone nondecreasing.

Mergesort recurrence.

ifn=1
T([n/2]) + T(|ln/2]) + n otherwise

T(n) <

Solution. T'(n) is O(n log, n).

Assorted proofs. We describe several ways to solve this recurrence.
Initially we assume n is a power of 2 and replace < with = in the recurrence.

Divide-and-conquer recurrence: proof by recursion tree Proof by induction

Proposition. If T(n) satisfies the following recurrence, then T'(n) = nlog n. Proposition. If T(n) satisfies the following recurrence, then T(n) = n log, n.
o = ifn=1 12 power of 2 o ifn=1 i3 power of 2
o 2T(n/2) + n otherwise o 2T(n/2) + n otherwise
Pf 1.
T(n) o —n Pf 2. [by induction on n]

* Base case: whenn=1, T(1)= 0 =nlog: n.
« Inductive hypothesis: assume T(n) = nlog, n.

T(n/2) T(n/2) 2 (n/2) =n
/ \ / \ « Goal: show that T(2n) = 2n log, (2n).
4 (n/4 =
T(n/4) T(n/4) T(n/4) T(n/4) (n/4) n TQn) = 2T +2n
logan
/\ /\ /\ /\ = 2nlogn +2n

T(n/8) T(n/8 Tm/8) Twn/8 Tn/8 Tm/B) T(n/8) T(n/l) 8 (n/¥) =n

2n (log2(2n)—1) +2n

2nlog2(2n). =

T(n) =nlogan
9

Analysis of mergesort recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) <n[logzn].

5. DiviDE AND CONQUER

0 ifn=1
Tn) < T([n/2]) + T(|n/2]) + n otherwise

» counting inversions

Pf. [by strong induction on n]
* Base case: n=1.
* Define n=|n/2] and n,=[n/2].
* Induction step: assume true for 1,2, ...,n—1.

7\ lgorthm Design

ng = [n/2] JON KLEINBERG - EVA TARDOS
T(n) =< Tm)+Tm)+ n < {2[1052 n] /2]
< m[logam] + m2[logam] + n _ gllogan /g
< ni[logana] + m2[logam2] + n
= nflogam] +n «——— logyns < [logyn] — 1
< n([logan]-1) +n

n[logan]. =

Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.
» Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* My rank: 1,2,....n.
* Your rank: aj,ay,...,a

ne

* Songsiand jare inverted if i < j, buta; > a;

s]clo]e]
1 2 3 4 5

you 1 3 4 2 5

2 inversions: 3-2,4-2

Brute force: check all ®(#2) pairs.

Counting inversions: divide-and-conquer

» Divide: separate list into two halves A and B.

» Conquer: recursively count inversions in each list.

* Combine: count inversions (a,b) with a€ A and b € B.
+ Return sum of three counts.

input

1 5 4 8 10 2 6 9 3 7

count inversions in left half A count inversions in right half B

1 5 4 8 10 2 6 9 3 7
5-4 6-3 9-3 9-7
count inversions (a, b) withae Aand b e B
1 5 4 8 10 2 6 € 3 7
4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9

outputl + 3 +13 =17 05

Counting inversions: applications

» Voting theory.

+ Collaborative filtering.

» Measuring the “sortedness” of an array.

« Sensitivity analysis of Google’s ranking function.

» Rank aggregation for meta-searching on the Web.

+ Nonparametric statistics (e.g., Kendall’s tau distance).

Rank Aggregation Methods for the Web

Cynthia Dwork" Ravi Kumar Moni Naor* D. Sivakumar

ABSTRACT

ling meta-search engines, combining
cting documents based on multiple

= jous problem in Web searches. Experiments
show that our methods are simple, efficient, and effective,

Keywords: rank ay ion, ranking functions, meta-
search, multi-word queries, spam

Counting inversions: how to combine two subproblems?

Q. How to count inversions (a, b) with a € A and b € B?
A. Easy if A and B are sorted!

Warmup algorithm.
* Sort A and B.
* For each element b €B,
- binary search in A to find how elements in A are greater than b.

list A list B

7 10 18 3 14 20 23 2 11 16
sort A sort B

3 7 10 14 18 2 11 16 20 23

3 7 10 14 18 2 11 16 20 23

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with a € A and b € B, assuming A and B are sorted.
* Scan A and B from left to right.
* Compare q; and b;. D
* If a; < b;, then q; is not inverted with any element left in B.
* If a; > b;, then b; is inverted with every element left in A.
* Append smaller element to sorted list C.

count inversions (a, b) withac Aand b e B

a 18 b 20 23

t R

merge to form sorted list C

2 3 7 10 11

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions
in a permutation of size n in O(n log n) time.

Pf. The worst-case running time T(n) satisfies the recurrence:

_Jen ifn=1
T = r([nr2]) + T(|n/2)) + O@) otherwise

Counting inversions: divide-and-conquer algorithm implementation

Input. List L.
Output. Number of inversions in L and sorted list of elements L.

SORT-AND-COUNT (L)

IF list L has one element

RETURN (0, L).
DIvIDE the list into two halves A and B.
(ra, A) < SORT-AND-COUNT(A).
(rg , B) <= SORT-AND-COUNT(B).

(rag , L') <= MERGE-AND-COUNT(A, B).

RETURN (ra+ r + rag, L').

5. DiviDE AND CONQUER

» closest pair of points

\ Ngoithm Desig

JON KLEINBERG - EVA TARDOS

Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points

with the smallest Euclidean distance between them.

Fundamental geometric primitive.

» Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

» Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Closest pair of points: first attempt

Sorting solution.
» Sort by x-coordinate and consider nearby points.
» Sort by y-coordinate and consider nearby points.

21

23

Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points

with the smallest Euclidean distance between them.

Brute force. Check all pairs with ©(n?) distance calculations.

1d version. Easy O(nlog n) algorithm if points are on a line.

Nondegeneracy assumption. No two points have the same x-coordinate.

Closest pair of points: first attempt

Sorting solution.

» Sort by x-coordinate and consider nearby points.
» Sort by y-coordinate and consider nearby points.

22

24

Closest pair of points: second attempt Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants. Divide. Subdivide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

) ° ° ®) ° O
e e ..
)))) ° ° ()
° S ® ° : o ° .o ®
(]
() ° ®) °
(] . (] ° o . (] ° (] . e e
O ° o0 ® o
® ()
° O ° ° o o o ® o
(] ° °
O ®
° ° O o O oo ° o ©
O ° O °
25
Closest pair of points: divide-and-conquer algorithm How to find closest pair with one point in each side?
» Divide: draw vertical line L so that n/2 points on each side. Find closest pair with one point in each side, assuming that distance < 8.
» Conquer: find closest pair in each side recursively. * Observation: only need to consider points within § of line L.
» Combine: find closest pair with one point in each side.
+ Return best of 3 solutions. N seems like O(N?)
® L ° o ® ® ° o ®
o o @ o ()
[[
® ° L ® °
o 8 Lo o
. o 21 . 21
® C ° ® C °
[} [}
12 o 12
" L ° ° o " L ° ° o
[[C P [[P
O [[

27 S

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < 8.
* Observation: only need to consider points within 8 of line L.
» Sort points in 2 8-strip by their y-coordinate.
» Only check distances of those within 11 positions in sorted list!

\ why 11?2
° o . °
° °
° [
°
°
°
° > °
° -
12 0 =min(12,21)
0/‘ ° ° L
[[°
[

29

Closest pair of points: divide-and-conquer algorithm

CLOSEST-PAIR (p1, p2, ..., Pn)

Compute separation line L such that half the points «——— O(nlogn)
are on each side of the line.

01 <= CLOSEST-PAIR (points in left half).
82 < CLOSEST-PAIR (points in right half). — 2T/2)
0 < min {8;,082}.

Delete all points further than d from line L. «— 0@

Sort remaining points by y-coordinate. <«—— O(nlogn)

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these — 0
distances is less than 9, update d.

RETURN 9.

31

How to find closest pair with one point in each side?

Def. Let s; be the point in the 2 6-strip, with the i# smallest y-coordinate.

Claim. Ifli—jl = 12, then the distance :
between s; and s, is at least d. O~
Pf. o
* No two points lie in same % 8-by-% 6 box. R I
+ Two points at least 2 rows apart %
have distance = 2 (4 9). = 2 rows R R R it
(%9 o (58 %o
i i %0
P> @ '@
Fact. Claim remains true if we replace 12 with7. ----- tosseqleesadoaaag
(2¢)
®
Po) d 30

Closest pair of points: analysis

Theorem. The divide-and-conquer algorithm for finding the closest pair of
points in the plane can be implemented in O(n log? n) time.

_Jen ifn=1
T = r([nr2]) + T(|n/2)) + Onlogn) otherwise

(x1-x2)2+ (y1-y)?

Lower bound. In quadratic decision tree model, any algorithm
for closest pair (even in 1D) requires Q(n log n) quadratic tests.

32

Improved closest pair algorithm

Q. How to improve to O(n log n) ?

5. DivIDE AND CONQUER

A. Yes. Don’t sort points in strip from scratch each time. v

* Each recursive returns two lists: all points sorted by x-coordinate,
and all points sorted by y-coordinate. ;
» Sort by merging two pre-sorted lists. . ‘

oAy

Theorem. [Shamos 1975] The divide-and-conquer algorithm for finding the g ‘\‘ » randomized quicksort
closest pair of points in the plane can be implemented in O(n log n) time. INTRODUCTION TO
ALGORITHMS
e(1) ifn=1
Pf T(n) = .
T([n/2]) + T(ln/2]) + On) otherwise
CHAPTER 7

Note. See SECTION 13.7 for a randomized O(n) time algorithm.

N\

not subject to lower bound

since it uses the floor function 33

Randomized quicksort Analysis of randomized quicksort
3-way partition array so that: the Proposition. The expected number of compares to quicksort an array
* Pivot element p is in place. 72|38 |9|1]4]10)2 of n distinct elements is O log n).
* Smaller elements in left subarray L. ?
« Equal elements in middle subarray M. the partitioned array A Pf. Consider BST representation of partitioning elements.
* Larger elements in right subarray R. 301 4 276 7 12118 9 10
—PL—roA M +———m7M7—R——i the original array of elements A
Recur in both left and right subarrays. 7 6 12 3 11 8 9 1 4 10 2 13 5

I

first partitioning element
first partitioning (chosen uniformly at random)

IF list A has zero or one element element in N

left subarray
RETURN. \

Pick pivot p € A uniformly at random.

RANDOMIZED-QUICKSORT (A)

3-way partitioning

(L, M, R) < PARTITION-3-WAY (A, ¢;). < ¢an be done in-place
(using n-1 compares)

RANDOMIZED-QUICKSORT (L).

RANDOMIZED-QUICKSORT (R).

35

Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements is O(n logn).

Pf. Consider BST representation of partitioning elements.
* An element is compared with only its ancestors and descendants.

3 and 6 are compared
7S [PEieIing GBI (when 3 is partitionin'; element)
first partitioning (chosen uniformly at random)

element in \

left subarray \

37

Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements is O(n logn).

Pf. Consider BST representation of partitioning elements.

* An element is compared with only its ancestors and descendants.
* Pr[a and gjare compared =2 / Ij-i+1l.

Pr[2 and 8 compared] = 2/7
cdRaritionindlcciment (com ;red if eitherrz, or 8]are éhosen
first partitioning (chosen uniformly at random) P it bef B 7
o et ~ as partition before 3, 4, 5, 6 or

left subarray \

39

Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements is O(n logn).

Pf. Consider BST representation of partitioning elements.
* An element is compared with only its ancestors and descendants.

first partitioni | . 2 and 8 are not compared
irst partitioning elemen b -

. ecause 3 partitions them

first partitioning (chosen uniformly at random) (P)

element in \

left subarray \

38

Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements is O(n logn).

Pf. Consider BST representation of partitioning elements.

* An element is compared with only its ancestors and descendants.
* Pr[a and gjare compared =2 / Ij-i+1l.

n n 9 n n—it+l 1
- Ex = —_— = -
pected number of compares Z Z e QZ Z ;
i=1 j=i+1 i=1 j=2
/ N
all pairs i and j < 2n -
=17
|
~ 2n/ —dz
z=1 T
= 2nlnn

Remark. Number of compares only decreases if equal elements.

40

5. DivIDE AND CONQUER

INTRODUCTION TO > median and Selecﬁon
ALGORITHMS

CHAPTER 9

Quickselect

3-way partition array so that:
* Pivot element p is in place.
* Smaller elements in left subarray L.
* Equal elements in middle subarray M.
* Larger elements in right subarray R.

Recur in one subarray—the one containing the k smallest element.

QUICK-SELECT (A, k)

Pick pivot p € A uniformly at random. 3-way partitioning
can be done in-place

(L, M, R) < PARTITION-3-WAY (A, p). <—— (using n-1 compares)

IF k < ILI RETURN QUICK-SELECT (L, k).

ELSEIF k >I|LI+1M| RETURN QUICK-SELECT (R, k—ILI-1MI)

ELSE RETURN p.

Median and selection problems

Selection. Given n elements from a totally ordered universe, find it

smallest.

* Minimum: k=1; maximum: k =n.

* Median: k=|(n+1)/2].

* O(n) compares for min or max.

* O(n log n) compares by sorting.

* O(nlog k) compares with a binary heap.

Applications.

Order statistics; find the “top k”; bottleneck paths, ...

Q. Can we do it with O(n) compares?
A. Yes! Selection is easier than sorting.

42

Quickselect analysis

Intuition. Split candy bar uniformly = expected size of larger piece is %.

Def. T(n, k) =

n.

T(n) < T(34n) +n = T(n) < 4n

expected # compares to select kth smallest in an array of size <

Def. T(n) = maxi T(n, k).

Proposition. T(n) < 4n.

Pf. [by strong induction on n]
* Assume true for 1,2, ...,n—1.

can assume we always recur on largest subarray
since T(n) is monotonic and
we are trying to get an upper bound

* T(n) satisfies the following recurrence: /

T(n) <

IA

n+2/n[T/2)+ ...+ Tn-3)+T(n-2)+T(n—1)]
n+2/nl 4n/0+ ... +4(n-3)+4(n-2)+4(n—1)]
n + 4 (3/4n)

4n. =

tiny cheat: sum should start at (| n/2]) "

Selection in worst case linear time

Coal. Find pivot element p that divides list of n elements into two pieces so
that each piece is guaranteed to have =< 7/10 n elements.

Q. How to find approximate median in linear time?
A. Recursively compute median of sample of < 2/10 n elements.

O(1) ifn=1
) = T(/10n) + T2/10n) + BO(n) otherwise

\

two subproblems
of different sizes!

45

Choosing the pivot element

* Divide n elements into |n/5] groups of 5 elements each (plus extra).
» Find median of each group (except extra).

o o <o
o
0 00 O

47

Choosing the pivot element

* Divide n elements into |n/5] groups of 5 elements each (plus extra).

PO0OOOEFOCOGO®OE®
OO0 LOIOO®O®
@EOHTOOOGOEOG
POOOOOEO®O®
ORONORONOROROROROND

N =54

Choosing the pivot element

median of
medians

Divide n elements into |n/5] groups of 5 elements each (plus extra).
Find median of each group (except extra).
Find median of |[n/5] medians recursively.
Use median-of-medians as pivot element.

o o o
o

46

48

Median-of-medians selection algorithm Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.

MOM-SELECT (A, k)

n<IAl

IF n< 50 RETURN k™ smallest of element of A via mergesort.

median of
Group A into |n /5] groups of 5 elements each (plus extra). medians p @ @

B < median of each group of 5.

p < MOM-SELECT(B, |n / 10]) «—— median of medians e

P N =54
Analysis of median-of-medians selection algorithm Analysis of median-of-medians selection algorithm
* At least half of 5-element medians < p. * At least half of 5-element medians < p.
* Atleast [|n/5]/2|=|n/10] medians < p. * Atleast [|n/5]/2|=|n/10] medians < p.

* Atleast3|n/10]| elements < p.

median of

median of
medians p @ medians p @ @

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians = p.

median of
medians p

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians = p.

* Symmetrically, at least |n/10] medians > p.
* At least3|n/10] elements > p.

median of
medians p

4

=54

53

55

Analysis of median-of-medians selection algorithm

* At least half of 5-element medians = p.
* Symmetrically, at least |n/10] medians > p.

median of
medians p e e

N =54 54

Median-of-medians selection algorithm recurrence

Median-of-medians selection algorithm recurrence.
» Select called recursively with |n/5]| elements to compute MOM p.
* Atleast3|n/10]| elements < p.
» Atleast3|n/10]| elements > p.
* Select called recursively with at most n —3 |n/10] elements.

Def. C(n) = max # compares on an array of n elements.

C(n) < C(ln/5)) + C(n—3[n/10]) + Ln

median of recursive computing median of 5
medians select (6 compares per group)
partitioning

(n compares)

Now, solve recurrence.
* Assume n is both a power of 5 and a power of 10?
* Assume C(n) is monotone nondecreasing?

56

Median-of-medians selection algorithm recurrence

Analysis of selection algorithm recurrence.
* T(n) = max # compares on an array of < n elements.
* T(n) is monotone, but C(n) is not!

T 6n if n <50
(m) = T(|n/5]) + T(n=3[n/10]) + %n otherwise

Claim. T(n) < 44n.
* Base case: T(n) < 6n for n < 50 (mergesort).
* Inductive hypothesis: assume true for1,2,...,n-1.
* Induction step: for n > 50, we have:

T(n)

IA

T(n/5)) + Tn—3|n/10))+ 11/5n

IA

44(|n/5) + 44(m-3|n/10)+ 11/5n

A

44(n/5) + 44n—44 (n/d)+ 11/5n «—— for n=50, 3|n/10] = n/4

44n. =

57

Lineartime selection postmortem

Proposition. [Blum-Floyd-Pratt-Rivest-Tarjan 1973] There exists a
compare-based selection algorithm whose worst-case running time is O(n).

Time Bounds for Selection

by .
Manuel Blum, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

Abstract
The number of comparisons required to select the i-th smallest of
n numbers is shown to be at most a linear function of n by analysis of

a new selection algorithm -- PICK. specifically, no more than

5.4305 n comparisons are ever required. This bound is improved for

Practice. Constant and overhead (currently) too large to be useful.

Open. Practical selection algorithm whose worst-case running time is O(n).

59

Linear-time selection postmortem

Proposition. [Blum-Floyd-Pratt-Rivest-Tarjan 1973] There exists a
compare-based selection algorithm whose worst-case running time is O(n).

Time Bounds for Selection

by .
Manuel Blum, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

Abstract
The number of comparisons required to select the i-th smallest of
n numbers is shown to be at most a linear function of n by analysis of

a new selection algorithm -- PICK. specifically, no more than

5.4305 n comparisons are ever required. This bound is improved for

Theory.
* Optimized version of BFPRT: < 5.4305 n compares.
* Best known upper bound [Dor-Zwick 1995]: < 2.95n compares.
* Best known lower bound [Dor-Zwick 1999]: = (2 + &) n compares.

58

