
CSC373, Fall 2017 Assignment 1

Due: Thursday, October 5, 2017, 2PM on MarkUs

You will receive 20% of the points for any (sub)problem for which you write “I do
not know how to answer this question.” You will receive 10% if you leave a question
blank. If instead you submit irrelevant or erroneous answers you will receive 0 points.
You may receive partial credit for the work that is clearly “on the right track.”

1. (20 pts) You are given an array A of n complex numbers. Some of these numbers might
be identical. For i 6= j ∈ [n] you can invoke a comparison procedure that returns whether
the numbers A[i] and A[j] are identical or not. Design a divide and conquer algorithm to
decide whether there is a number in the array that appears more than dn/3e times in A
using O(n log n) invocations of the comparison procedure. (For simplicity you may assume
n = 2k for some k and that is a hint.) Solutions using asymptotically more invocations of
the comparison procedure will not receive any credit.

(a) In English, state the high level idea of your algorithm.

(b) Describe your algorithm in pseudocode.

(c) Provide a correctness argument for your algorithm.

(d) State the recurrence that describes the number of invocations of the comparison pro-
cedure (do not forget the base case).

2. (20 points) You are given two sorted lists A1 and A2, each with n real numbers. Assume all
numbers in A1 ∪ A2 are distinct. Design a divide and conquer algorithm that returns the
median of A1 ∪A2 using O(log n) comparisons that test whether or not x ≤ y. The median
of m numbers x1 ≤ x2 . . . ≤ xm is xdm/2e.

(a) In English, state the high level idea of your algorithm.

(b) Describe your algorithm in pseudocode.

(c) Provide a correctness argument for your algorithm.

(d) State the recurrence that describes the number of invocations of the comparison pro-
cedure (do not forget the base case).

3. (30 pts) Consider the following question concerning the MST problem where the input is a
connected graph G = (V,E) with edge costs c : E → R.

(a) Let e = (u, v) ∈ E be an arbitrary edge. We wish to compute a MST T = (V,E ′) for G
subject to the constraint that e ∈ T . Consider the following divide and conquer type
algorithm.

• Partition the vertices V into two sets V1 and V2 having sizes dn/2e and bn/2c such
that u ∈ V1 and v ∈ V2.
• Compute a minimum spanning tree or minimum spanning forest T1 = (V1, E1) for

the graph induced by V1 and T2 = (V2, E2) for the graph induced by V2.
Note: by spanning forest we mean a collection of trees, with the fewest possible
number of connected components. Kruskal’s algorithm would compute a minimum
spanning forest.

1 of 3



CSC373, Fall 2017 Assignment 1

• Return T = (V,E1 ∪ E2 ∪ {e})
Is the solution T necessarly a spanning tree? If T is a spanning tree, is it necessarily a
minimum spanning tree?

(b) Consider the constrained MST problem as above. Design a greedy algorithm for this
problem. Give an informal but convincing argument as to why your algorithm computes
an optimal spanning tree subject to the constraint.

(c) Returning to the standard (unconstrained) MST problem, consider the case when all the
edge costs are distinct. Is the MST unique? If so, provide a brief argument; otherwise,
provide a counter-example.

4. (20 points) Recall the EFT algorithm for interval scheduling on one machine. We wish to
extend this algorithm to m machines. That is, when considering the ith interval Ij we will
schedule it if there is an available machine. But on which machine? That is, what is the tie
breaking rule?

(a) Consider the First-Fit EFT greedy algorithm:

• Sort the intervals {Ij} so that f1 ≤ f2 . . . ≤ fn

• For j = 1 . . . n
For ` = 1 . . .m

If Ij fits on M` then schedule Ij on M`

EndFor
EndFor

Is First-Fit an optimal algorithm? If yes, provide a proof; otherwise provide a counter-
example.

(b) Consider Best-Fit EFT greedy algorithm:

• Sort the intervals {Ij} so that f1 ≤ f2 . . . ≤ fn

• For j = 1 . . . n
If there is a machine M` on which Ij can be scheduled, then

schedule Ij on M` where ` = argmaxk{fk ≤ sj and Ik scheduled on Mk}
EndFor

Is Best-Fit an optimal algorithm? If yes, provide a proof; otherwise provide a counter-
example.

5. (20 pts) You are given two arrays D (of positive integers) and P (of positive reals) of size
n each. They describe n jobs. Job i is described by a deadline D[i] and profit P [i]. Each
job takes one unit of time to complete. Job i can be scheduled during any time interval
[t, t+ 1) with t being a positive integer as long as t+ 1 ≤ D[i] and no other job is scheduled
during the same time interval. Your goal is to schedule a subset of jobs on a single machine
to maximize the total profit - the sum of profits of all scheduled jobs. Design an efficient
greedy algorithm for this problem.

(a) Describe your algorithm in plain English (maximum 5 short sentences).

(b) Describe your algorithm in pseudocode.

2 of 3



CSC373, Fall 2017 Assignment 1

(c) Prove correctness of your greedy procedure. One possibile proof is to argue by induction
that the partial solution constructed by the algorithm can be extended to an optimal
solution. But you can use any type of valid proof argument.

(d) Analyze the running time of your algorithm (in terms of the total number of operations).

6. (20 points)

Consider the following {0, 1, 3} knapsack problem. You are given a knapsack size bound
S and n items {(s1, v1), . . . (sn, vn)}. A feasible solution σ is a sequence < c1, . . . , cn > in
{0, 1, 3}n such that

∑
i cisi ≤ S and the value of such a solution is V (σ) =

∑
i civi. That

is, every item in the knapsack occurs exactly once or three times. Give a polynomial time
dynamic programming algorithm for optimally solving this problem assuming each size si is
a positive integer and the knapsack bound S ≤ n3.

(a) Describe the semantic array.

(b) Describe the computational array. Don’t forget the base case.

(c) Justify why the above two arrays are equivalent.

(d) What is the running time of your algorithm in terms of n. You can assume all operations
take unit time and we only need to compute the optimum value (and not an optimum
solution).

7. (20 pts) You are given an array A of n ≥ 3 points in the Euclidean 2D space. The points
A[1], A[2], . . . , A[n] form the vertices (in clockwise order) of the convex polygon P . A tri-
angulation of P is a collection of n − 3 interior diagonals of P such that the diagonals do
not intersect except possibly at the vertices. The total length of a triangulation of P is the
sum of the lengths of the n − 3 interior diagonals used to form that triangulation. Design
an efficient dynamic programming algorithm to find the total length of a triangulation with
the minimum total length.

(a) Describe the semantic array.

(b) Describe the computational array. Don’t forget the base case.

(c) Justify why the above two arrays are equivalent.

(d) What is the running time of your algorithm in terms of n. You can assume all operations
take unit time and we only need to compute the optimum value (and not an optimum
solution). .

3 of 3


