
CSC373F Problem Set 3 Fall, 2011

Due: Wed, November 30, beginning of lecture

NOTE: Each problem set only counts 5% of your mark, but it is important to do your
own work (but see below). Similar questions will appear on the next term test. You may
consult with others concerning the general approach for solving problems on assignments,
but you must write up all solutions entirely on your own. Anything else is plagiarism,
and is subject to the University’s Code of Behavior. You will receive 1/5 points for any
(non bonus) question/subquestion for which you say “I do not know how to answer this
question”. You will receive .5/5 points if you just leave the question blank.

1. (20 points)

Show that each of the following problems are NP complete.

(a) QUARTER-CLIQUE = {G = (V,E)|G has a clique of size at least ⌈|V |/4⌉}

(b) UNIT-THOUGHPUT = {(J1, J2, . . . , Jn)| all n of these jobs can be scheduled
without conflict}. Here Ji = (ri, pi, di) where ri is the release time, pi is the
processing time, and di is the deadline. Each such job must be scheduled to
start no sooner than ri and must complete by time di. Two scheduled jobs Ji
and Jk do not conflict if they do not intersect (except we will allow the starting
time of one job to coincide with the finishing time of another job).

2. (10 points)

Let L be a NP complete set and let one NP representation of L be L = {w|∃y[R(w, y)
is true and |y| ≤ q(|w|}. Here q is a polynomial and R s a polynomial time predi-
cate. The associated search problem, L(w,R, q), is “Given w, find a certificate y if
it exists (i.e. if w ∈ L), else say that y does not exist”. Show that P = NP implies
that L(w,R, q) can be computed in polynomial time.
Hint: you will need to define another NP language which will allow you to construct
a certificate y (one symbol at a time) when it exists.
A better formulation for the previous question is as follows:

Let L be a NP complete set and let one NP representation of L be L = {w|∃y[R(w, y)
is true and |y| ≤ q(|w|}. Here q is a polynomial and R s a polynomial time pred-
icate. The associated search problem, L(w,R, q), is “Given w, find a certificate y
if it exists (i.e. if w ∈ L), else say that y does not exist”. Show that the search
problem L(w,R, q) can be polynomial time reduced to the decision problem for L.
That is, L(w,R, q) ≤poly

T L.

In the original formulation, it is sufficient that L be in NP. But in the new formu-
lation, it is important that L also be complete. In particular, we could formulate
the set COMPOSITE = {w|∃y : y is a proper divisor of w} where w and y say are
decimal representations of positive integers. Whereas we know that COMPOSITE
is in P, the search problem essentially solves the integer factoring problem which we
strongly believe cannot be computed in polynomial time.
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3. (20 points)

Consider the weighted exact max-3-Sat problem and the single flip local search
algorithm ALG for this problem. That is, we let the neighbourhood of a solution
be N(τ) = N1(τ) = {τ ′ : τ ′ differs from τ on exactly one variable}.

(a) Prove that the the ratio W (ALG)
W

≥ 3/4 where W (ALG) is the weight of any
local optimum and W is the sum of all clause weights.

(b) Suppose we modify the local neighbourhood N(τ) of a solution so that now
N(τ) = N1(τ) ∪ {τ̄} where τ̄ is the complement of the assignment τ . Show

that the ratio W (ALG)
W

> 3/4.

4. (20 points)

Consider the following call routing problem. There is an n node bi-directional ring
network G = (V,E) upon which calls must be routed. That is V = {0, 1, . . . , n− 1}
and E = {(i, i + 1 mod n)} ∪ {(i, i − 1 mod n)} and calls cj are pairs (sj, fj)
originating at node sj and terminating at node fj. Each call can be routed in a
clockwise or counter-clockwise direction. The load Le on any directed edge is the
maximum number of calls routed on this edge. The goal is to minimize maxe∈ELe.

(a) Formulate this problem as an IP.
Hint: Consider variables xj and yj that indicate the direction of call cj. (You
can also use just one indicator variable to represent the direction but I think
it might be easier to think in terms of two such variables.)

(b) Using an LP relaxation of this problem, show how to derive a 2-approximation
algorithm.

5. Consider the following 3 from 4 frequency set cover problem: We are given a col-
lection of sets S = {S1, . . . , Sm} for Si ⊆ U with the property that every u ∈ U
occurs in exactly four different sets Si in S. There is also a cost function c : S → R

≥0

and we let ci denote the cost of set Si. A feasible solution is a sub-collection S ′ ⊆ S
such that every u ∈ U occurs in at least three different sets Si in S ′. The goal is to
find a feasible solution S ′ so as to minimize the cost c(S ′) =

∑
i:Si∈S

′ ci.

(a) Formulate the 3 from 4 frequency set cover problem as a {0, 1} IP
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(b) Show how to use LP relaxation + rounding to obtain a 2-approximation algo-
rithm. Explain why your rounded solution is a feasible solution to the IP and
why it provides a 2-approximation.

6. Consider the weighted max cut problem. That is, we are given a graph G = (V,E)
and edge weights w : E → ℜ≥0.

Consider the following randomized max cut algorithm that computes a cut (S, T )

S := ∅;T := ∅
While V 6= ∅
Choose any v ∈ V
With probability = 1/2, add v to S and otherwise add v to T
V := V − {v}
End While

(a) Show E [w(S, T )] =
∑

e∈E
w(e)

2

(b) Describe how to use the method of conditional expectations to derive a de-
terministic max cut algorithm producing a cut (S, T ) satisfying w(S, T ) ≥
∑

e∈E
w(e)

2

7. Suppose we are given an algorithm that multiplies two degree n univariate polyno-
mials a(x) and b(x) and returns what is supposed to be the degree 2n polynomial
c(x) = a(x)∗b(x). Describe an O(n) time randomized testing algorithm and explain
the error bound in terms of the time bound. More precisely, your testing algorithm
will always say ”good” if indeed c(x) = a(x) ∗ b(x) and will say ”bad” with some
constant probability δ > 0 if c(x) 6= a(x) ∗ b(x).
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