
CSC373F Problem Set 1 Fall, 2011

Due: Wed, October 5, beginning of lecture

NOTE: Each problem set only counts 5% of your mark, but it is important to do your
own work (but see below). Similar questions will appear on the first term test. You may
consult with others concerning the general approach for solving problems on assignments,
but you must write up all solutions entirely on your own. Anything else is plagiarism,
and is subject to the University’s Code of Behavior. You will receive 1/5 points for any
(non bonus) question/subquestion for which you say “I do not know how to answer this
question”. You will receive .5/5 points if you just leave the question blank.
Advice: Do NOT spend an excessive amount of time on any question and especially not on
a bonus question. If you wish to spend “free time” thinking about (say) bonus questions
that is fine but you should not sacrifice time needed for other courses.

1. (15 points)

Consider the following greedy algorithm for graph colouring. Without loss of gener-
ality we will let the input G = (V,E) be a connected graph with V = {v1, v2, . . . , vn}
(n ≥ 1) and let the colours be C = {1, 2, . . .}. We also let Nbhd(v) denote the neigh-
bourhood (i.e. adjacent vertices) of node v.

GREEDY COLOURING ALGORITHM (using breadth first search)

Let χ(v1) = 1;L(0) := {v1}; i := 0 % χ() is the colouring function
% L(i) will denote the nodes in the current level of the breadth first search

Let A := {v1} % A will be the nodes already coloured
Let U := V − {v1} % U will be the nodes not yet coloured
While U 6= ∅

L(i+ 1) := ∅
For j := 1..n : vj ∈ L(i)

For k = 1..n : vk ∈ Nbhd(vj) ∩ U
% colour the node being added to the next level
χ(vk) := minc∈C : c /∈ ∪vh∈Nbhd(vk)∩A χ(vh)
U := U − {vk};A := A ∪ {vk}
L(i+ 1) := L(i+ 1) ∪ {vk}

END For
END For
i := i+ 1

END While

(a) (10 points) Give a short but convincing argument showing that the above
greedy algorithm will colour every 2-colourable graph using 2 colours; that is,
the greedy algorithm is optimal for 2-colourable graphs.

(b) (5 points) Give an example of a 3-colourable graph for which the above greedy
algorithm will use more than 3 colours.

1

2. Consider the following scheduling problem. An input is a set of jobs J = {J1, . . . , Jn}
where each job Ji is described by a triple of non-negative real numbers ri, di, pi where
ri (respectively di, pi) is the release time (resp. the deadline, the processing time)
of job Ji. A job that is scheduled cannot start sooner than its release time ri and
must end before its deadline di and since it requires pi time to process, the time
σ(i) that the job is scheduled to begin must satisfy ri ≤ σ(i) < di − pi. The goal is
to schedule as many jobs as possible without scheduled jobs intersecting.
Consider the following “earliest completion time” greedy algorithm:

D := 0 % D is the current finishing time of the last scheduled job
S := ∅ S is the set of jobs accepted thus far
Y := J % Y is the set of jobs not yet considered.
While Y 6= ∅

Let j = argmink:Jk∈Y [max(rk, D) + pk] (breaking ties in any defined way)
Y := Y − {Jj} %Only consider a job once
If max(rj, D) + pj < dj

then D := max(rj, D) + pj;
S := S ∪ {Jj} Jj is added to the solution

End If
END While

(a) (10 points) Give a charging argument showing that the above greedy algorithm
is a 2-approximation algorithm; that is, the number of jobs scheduled in an
optimal solution is no more than twice the number of jobs scheduled by the
greedy algorithm.

(b) (5 points) Give an example of a set of jobs for which the above greedy algorithm
will not produce an optimal schedule.

3. (15 points) We wish redefine the cost of a path in various ways and then see if
Dijkstra’s shortest path algorithm will still optimally solve the least cost paths
problem. For each of the following definitions of the cost of a path, state and justify
whether or not Dijkstra’s algorithm optimally solves the least cost problem. We
assume a non negative cost c(e) for each edge e in the graph. If Dijkstra’s algorithm
is not optimal then show a counter example. If Dijkstra’s algorithm is still optimal
then say what is the key observation in the proof that still holds.

(a) (5 points) The cost of a path π is maxe∈π c(e)

(b) (5 points) The cost of a path π is mine∈π c(e)

(c) (5 points) The cost of a path π is the average cost of an edge in π; that is,

cost(π) =
∑

e∈π
c(e)

|e:e∈π|

2

4. (15 points) Consider the following k-median problem for the real line. The input
is a set X of n points x1, . . . , xn on the real line and without loss of generality let
us say x1 < x2 < . . . < xn. We are also given an integer parameter k, 1 ≤ k ≤ n.
The goal is to select select k points Y ⊆ X so as to minimize

∑n

i=1 miny∈Y |xi − y|.
Provide a dynamic programming (DP) algorithm for this problem.

• (5 points) Provide a semantic array definition for computing the cost of an
optimal solution.
Hint: Think of the solution as being a clustering of the points into k groups
where each group is a consecutive sequence of points.

• (5 points) Provide a recursive (computational) definition for computing values
of this array and briefly justify why your computational definition is equivalent
to the semantic definition.

• (5 points) What is the asymptotic complexity of your algorithm in terms of
the number of arithmetic operations and comparisons as a function of n and
k?

3

