
The (1− 1/e) approximation via randomized rounding of an LP

We are taking these notes from Vijay Vazirani’s text “ Approximation Algorithms”.

• (The algorithm)

We consider the weighted Max-Sat problem (for an arbitrary CNF formula F ). Here
we will use randomization in a natural way when we have an LP relaxation where
the fractional variables can be viewed as probabilities. Consider the following IP
formulation of (Weighted) Max-Sat:

Note again: Here we are looking at all CNF formulas as input in contrast to Max-
k-Sat and Exact Max-k-Sat.

maximize
∑

j wj · zj

subj to
∑

i∈C+

j
yi +

∑
i∈C−

j
(1− yi) ≥ zj

yi ∈ {0, 1}; zj ∈ {0, 1}

The intended meaning of zj is that clause Cj will be satisfied and the intended
meaning of yi is that the propositional variable xi is set true (false) if yi = 1 (resp
0).

C+
j (resp C−

j ) is the set of all variables occurring positively (resp negatively) in Cj.

e.g. for Cj = x1 ∧ x̄2 ∧ x3, we have C+
j = {x1, x3};C

−

j = {x2}

Since we have forced our fractional solutions to be in [0,1], we can think of each
fractional variable as a probability. Then we can do randomized rounding. Let
{y∗i , z

∗

j } be an optimal LP solution. Then we set y′i = 1 with probability y∗i to
obtain an integral solution (and hence truth assignment). We do not need to round
the {z∗j } variables since the desired solution is a truth assignment (which will in
turn determine which clauses are satisfied), but we do need to use properties of the
LP solution to derive an approximation ratio.

We show that this approach leads to a 1− (1− 1/k)k ≥ 1− 1/e approximation (in
expectation) for the contribution of clauses having k literals since (1− 1/k)k < 1/e
(and converges to 1/e as k grows). Hence the approx ratio is ≥ 1− 1/e > .632.

This method can be derandomized (by the method of conditional expectation) to
obtain a deterministic algorithm with the same 1− 1/e approximation ratio. Note
that this derandomization entails calling an LP solver O(n) times. We need one
further idea to obtain a (3/4) approximation ratio. Namely, we take the maximum
of the 1 − 1/e algorithm and the (de-randomized) “naive” algorithm (that sets all
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variables to true or false randomly with probability = 1/2 .)

Let LP-OPT denote the optimal fractional solution value That is, LP-OPT =∑
j wjz

∗

j Let Y ′ be the weight of the rounded solution (a random variable since
we are choosing the integral values y′i randomly and independently with probability
y∗i ).

We want to show that iE[Y ′] ≥ (1− 1/e) LP-OPT.

As stated above, we will show more specifically that for any clause Cj with k literals,
the probability that Cj is satisfied (in the rounded solution) is at least βkz

∗

j where
βk = 1− (1− 1/k)k and then as noted that βk ≥ (1− 1/e) for all k.

This will then imply the desired result by the linearity of expectations.

• (The analysis)

We will need to make use of the arithmetic geometric mean inequality whcih states
that for non negative real values,

a1+a2+...+ak
k

≥ (a1 · a2 . . . · ak)
1

k

or equivalently that
[a1+a2+...+ak

k
]k ≥ (a1 · a2 . . . · ak).

Let Cj be a k literal clause and by renaming we can simplify the discussion by
assuming Cj = x1 ∨ x2... ∨ xk. Note: we are fixing a particular k literal clause and
doing the analysis of its expected contribution. We do this analysis for each clause
independently and use linearity of expectations to add up the contributions for each
clause.

Cj is satisfied if not all of the yi are set to 0 (when we set y′i = 1 with probability
y∗i ).

The probability that Cj is satisfied is then 1− Πk
i=1(1− y∗i ).

By the arithmetic-geometric mean inequality this probability is then at least

1− (
∑k

i=1
(1−y∗i )

k
)k

= 1− (1−
∑k

i=1
y∗i
k
)k

≥ 1− (1−
z∗j
k
)k

where the last inequality is by the LP constraint
∑

i∈C+

j
yi +

∑
i∈C−

j
(1 − yi) ≥ zj

(keeping in mind the variable renaming making all literals positive).

If one defines g(z) = 1− (1− z
k
)k then g(z) is a concave function with g(0) = 0 and

g(1) = βk. By concavity, g(z) ≥ βkz for all 0 ≤ z ≤ 1.

That ends the proof.
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