CSC373: Lecture 9

Questions about problem set?
Test format
One more charging argument?

A second pseudo polynomial time
algorithm for the knapsack problem

Turning the pseudo polynomial time
algorithm into a fully polynomial time
approximation scheme (FPTAS)

DP for least cost paths problem



The Knapsack problem

* |n the knapsack problem we are given a set of nitems /(1),
..., I(n) and a size bound B where where each item /(j) =
(s(j), v(j)) with s(j) being the size of the item and v(j) the
value. (Often one uses w(j) for the weight of the item
rather than s(j) but | am avoiding that due to our earlier
use of w(j) which corresponded to the weight or profit of
an interval in the WISP.) In general we can allow real
valued parameters but in some cases need to restrict
attention to integral parameters.

* Afeasible set is now a subset of items S: the sum of the
sizes of items in S is at most the bound B. The goal is to
find a feasible set S maximizing the sum of the values of
items in S. This is know to be an NP hard problem but as
we shall see it is only “weakly” NP hard. (It remains an NP
hard problem even when v(j) = s(j) for all j.)



The first DP algorithm

The previous approach did not work because it
allows using an item more than once.

Instead we can use V/[i, b] = the maximum profit
possible using only the first i items and not
exceeding the bound b.

The corresponding computational array is :
V’[0,b] = V’[i,0] = 0. V’[ib] = max {C,D} where C =
V’[i-1, b] and D = V’[i-1, b-s(i)] + v(i) if s(i) <= b; else O

This algorithm has running time O(nB) and is pseudo
polynomial time.



A second DP knapsack algorithm

* In the first algorithm, if the weights (or the bound
B) are small (i.e. B = poly(n)) then the algorithm
runs in polynomial time.

 What if the values {v(i)} are integral and small?
Consider the following semantic array W/i,v] =
minimum size required to obtain profit v using a
subset of the items I(1), ..., I{i) if possible; infinity
otherwise

* The desired optimum value is
max {v: W[n,v]}is at most B.



Corresponding computational
array

W’[0, v] = infinite for allv>0
W’[i,v]=0foralliand allv<=0

W’[iv] = min{C,D}  where C= W’[i-1,v] and
D= W’[i-1, v-v(i)] + s(i)

This DP remain pseudo polynomial time but

now the complexity is O(nV) where
V=v(1)+v(2)..+v(n).



An FPTAS for the knapsack
problem

* This algorithm can be used as the basis for an efficient
approximation algorithm for all input instances. The
basic idea is relatively simple:

* The high order bits/digits of the values can determine
an approximate solution (disregarding low order bits).

 The fewer high order bits we use, the faster the
algorithm but the worse the approximation. The goal is
to scale the values in terms of a parameter epsilon so
that a (1+epsilon) approximation is obtained with time
complexity polynomial in n and (1/epsilon). The details
are given in the KT text (section 11.8).



Looking ahead toward discussion of
NP complete problems

* |In term of computing optimal solutions, all "NP
complete optimization problems” (i.e.
optimization problems corresponding to NP
complete decision problems) can be viewed (up
to polynomial time) as a single class of problems.

* Butin the world of approximation algorithmes,
this single class splits into many classes of
approximation guarantees. Up to our believed
complexity assumptions these possibilities
include:



Different approximation possibilities
for NP complete optimization given
widely believed complexity claims

An FPTAS (e.g. knapsack problem)
A PTAS but no FPTAS (makespan)
Having a ¢ > 1 approximation but no PTAS (JISP)

An O(log n) approximation but no constant
approximation (set cover)

No n*{1-epsilon} approximation for any epsilon > 0.
(graph colouring and MIS for arbitrary graphs)

Here n stands for some input size parameter (e.g.
number of nodes in a graph)



A DP with a somewhat different style

* Lets consider the single source least cost
paths problem which is efficiently solved by
Dijkstra’s greedy algorithm for graphs in which
all edge costs are non-negative.

* The least cost paths problem is still well
defined as long as there are no negative
cycles; that is, the least cost path is a simple
path.



Single source least cost paths for
graphs with no negative cycles

Following the DP paradigm , we consider the nature of an
optimal solution and how it is composed of optimal
solutions to subproblems".

Consider an optimal simple path P from source s to some
node v. This path could be just an edge but if the path P
has length greater than 1, then there is some node u which

immediately proceeds vin P. If P is an optimal path to v,
then the path leading to u must also be an optimal path.

We are led to define the following semantic array:

C[i,v] = the minimum cost of a simple path with path length
at most i from source s to v. (If there is no such path then
this cost is infinte.)

The desired answer is then the single dimensional array
derived by setting i = n-1 where n =[V/.



Corresponding computational
array

C’[O,v] = 0 if v =s and infinite otherwise.

C’li,v] = min {A,B} where A = C’[i-1,v] and

B = min {C’(i-1, u) + c(u,v) | (u,v)in E} .

Note: This presentation is slightly different than in the
KT text.

Why is this a slightly different form than before?
Namely, showing the equivalence between the
semantic and computationally defined arrays) is not
an induction on the number of input items in the
solution but is based on some other parameter (i.e.
the path length) of the solution.



