CSC373: Lecture 8

Continue the discussion of the
weighted interval selection problem

Recursive algorithms and memoization
vs iterative algorithms

Obtaining a solution and not just the
value of the solution

Two pseudo polynomial time algorithms
for the knapsack problem

Turning the pseudo polynomial time
algorithm into a fully polynomial time
approximation scheme (FPTAS)



Dynamic programming

* Dynamic programming (DP) began as and remains a
very general algorithmic approach for solving
optimization problems. Its usage now goes beyond
that but still optimization is the main use.

* We start with our first problem, namely interval
selection but now we consider the weighted version
WISP where an interval I(j) is now a triple (s(j), f(j),
w(j)) where w(j) is the weight or profit of the j th
interval. The objective is to find a feasible (i.e. non
intersecting) set of intervals S so as to maximize the
sum of interval weights in the chosen set.



Why not use greedy for WIS?

* |t turns out that all the ways we can think of
ordering the input items will not only fail to be
optimal but can produce arbitrarily bad solutions.
Moreover, for a general greedy formalization it
can be proven that no greedy algorithm can
provide a good solution (in the worst case).

* Some possible orderings: by non increasing
weight, by non decreasing weight/interval
length.



The DP approach

e Lets consider an optimal solution and once again assume
that the intervals have been sorted by non-decreasing
finishing time.

 Then in an optimal solution OPT either the last interval I(n)
was selected or it was not. If not, then we must be using
an optimal solution for the first n-1 intervals. If /(n) is in
OPT then we cannot have any intervals in OPT ending at
time s(n) or later. Furthermore (and this is the essential
aspect of DP), the intervals ending before s(n) must be
chosen optimally. (Note: once again we will define the
problem so that an interval cannot start when another one
ends. We can easily modify things if we do want to allow
an interval to start at precisely the time another ends.)



The value/profit of an optimal solution

* The previous observation leads us to want to
compute the entries (fori =1, ...n) in the
following “semantic array”: V/[i] = max profit
obtainable by a set of intervals ending at or
before time f(i). The optimal value then is V/[n].
We also can define V/[0] = 0.

* To compute the entries of this array, it is helpful
to define pred(i) = largest index j such that f(j) <
s(i). (If we allowed a job to start where another
ended we would then have f(j) <= s(i).)



Recursively computing the V|i]

V’[0] =0

V’[i] = max{A,B} where A =V’[i-1] and

B =V’[pred(i)] + w(i)

Here B (resp. A) corresponds to the case that the

i th interval is used (resp. not used) in the optimum

solution for the first i intervals. (We can arbitrarily

assume we take the solution corresponding to case
A when A = B).

Claim: V[i] =V’[i] foralli=1,2,...n.




Iterative vs recursive implementation

* We can clearly compute the entries of V’[i]
iteratively fori=0,1,...,n. Time bound is O(n log n)
for sorting and for computing pred[i] values.

 What is we use a recursive program directly
following the definition of V’'? Suppose for all i=
1,2,..n-1, interval I(i) overlaps I(i+1) and no other

I(j) for j > i+1. We would be led to the com
recurrence T[n] = T[n-1] + T[n-2] whose so
(recall Fibonacci sequences) is exponentia

* Memoization avoids this problem.

olexity
ution

In N.



Why two arrays V and V'?

 The semantic array is defined to say what we are
trying to compute. The recursively defined
computational array is a essentially high level
code for how to compute the entries of the
semantic array. The creative aspect of DP is
coming up with an appropriate semantic array
that has to provide us with enough information
to obtain the desired result as well as being easy
to compute. And although it often seems tedious,
we need a proof that V =V’



Computing an optimal solution and
not just the value

* So far we only computed the value of an
optimal solution (for WISP) but we can easily
adapt the DP solution to compute the solution
as well. While there are somewhat more
efficient ways to do this, the conceptually
simplest thing to do is to maintain an array,
say S[i] which contains the partial solution
corresponding to the value in V[i]. It should be
clear from the recursion defining V' how to
do this.



The Knapsack problem

* |n the knapsack problem we are given a set of nitems /(1),
..., I(n) and a size bound B where where each item /(j) =
(s(j), v(j)) with s(j) being the size of the item and v(j) the
value. (Often one uses w(j) for the weight of the item
rather than s(j) but | am avoiding that due to our earlier
use of w(j) which corresponded to the weight or profit of
an interval in the WISP.) In general we can allow real
valued parameters but in some cases need to restrict
attention to integral parameters.

* A feasible setis now a subset of items S: the sum of the
sizes of items in S is at most the bound B. The goal is to
find a feasible set S maximizing the sum of the values of
items in S. This is know to be an NP hard problem but as
we shall see it is only “weakly” NP hard. (It remains an NP
hard problem even when v(j) = s(j) for all .)



A first attempt

 Here is a plausible DP approach. Lets assume all
sizes are integral. Suppose we consider an
optimal solution and consider the last item
olaced in the knapsack. Then after placing that
item in the knapsack (say having weight s), we
nave reduced the available space to B-s. So it
seems that we need to have a semantic array V[b]
= max profit/value obtainable within size bound b
for 0 <= b <= B.

 The recursive array V'[b] =0 for b <=0 and then
V’[b] = max {V’[b-s(j)] + v(j):j=1,2,...n}

* Does this work and if not why not?




A correct approach

* The previous approach did not work because
it allows using an item more than once.

* Instead we can use VJ/i, b] = the maximum
profit possible using only the first i items and

not exceeding the bound b.

* The corresponding computational array is :
V’[0,b] = V’[i,0] = 0. V’[ib] = max {A,B} where
A =V’[i-1, b] and B = V’[i-1, b-s(i)] + v(i) if
s(i) <=b; else O



