CSC373: Lecture 7

Greedy algorithms for makespan
Start dynamic programming (DP)

The weighted interval selection
problem (WISP)



An “online” greedy algorithm for the
makespan problem

* Our final example of a greedy algorithm (for
now at least) concerns the makespan
scheduling problem. In the more general
version of the problem, there are n jobs and m
machines and each job J(i) is described by a
vector <p(i,1), ..., p(i,m)> where p(l,j)
represents the “load” (e.g. processing time)
for the i th job on the j th machine. Today we
will only consider the special case of identical
machines where p(i,j) = p(i) for all machines|.



ldentical machines makespan
continued

* |In the makespan problem, all jobs must be
scheduled. That is, an algorithm must assign a
machine a(i) to each job. Given such an
assignment, the goal is to minimize the
maximum over all machines j of the sum of
the loads assigned to that machine. That is, if
the loads represented processing times, the
goal is to minimize the latest finishing time for
all the jobs.



The online greedy algorithm

e Suppose we think of the jobs coming in as a
stream of jobs J(1), J(2), ... An online algorithm
must assign each job immediately to a
machine before the next job arrives. Consider
the natural greedy algorithm, namely assign
each job to that machine which currently has
the least load (breaking ties arbitrarily).

* Claim: the approximation bound for the online
greedy algorithm is (2-1/m) for all m > 1.



The proof and a tight example

* The proof for the approximation follows the
approach we used in the interval colouring
result. Namely, we will establish some simple
“intrinsic bounds” that any solution must
satisfy and then analyze the greedy solution in
terms of the following intrinsic bounds.

 OPT must be at least B1 = max{p(i)}.

 OPT must be at least the average/machine
load B2 =(p(1) +...+p(n))/m



Greedy in terms of B1 and B2

* Consider the job that completes last defining
the makespan. Without loss of generality we
can say this is the n th job. Consider the
assigned machine just before the assignment.
Its load is at most the average load of previous
jobs, that is, B2 - p(n)/m. After adding p(n) to
the load, the makespan becomes
B2 + (1-1/m) p(n) which is at most
B2 + (1-1/m) B1 so that the greedy makespan
is at most (2-1/m) OPT



Why study proofs (again)

* Looking at this proof we can see what seems to
be causing the biggest gap between an optimal
assignment and that of the online greedy
algorithm. Namely, a job that maximizes the load
could be the last job defining the makespan.
While this doesn’t show that the bound is tight,
we do have the following tight example: let the
first m (m-1) jobs have unit load while the last job
has load p(n) = m. Then greedy spreads the unit
jobs evenly over the m machines (each machine
then having load m-1) and then is stuck adding
p(n) to some machine forcing the makespan to
2m-1. OPT spreads the unit jobs over m-1
machines so that it can achieve makespan m.



The LPT makespan algorithm

* Considering this tight example suggests a different
(not online) greedy algorithm.

* Namely the proof and example suggest sorting the
jobs so that the largest come first (and hence the
name LPT for longest processing time). It can be
shown (although we will not do that now) that the
approximation ratio for the LPT makespan

algorithm (on m identical machines) is
(4/3 —1/3m).

* One can also achieve a somewhat better online
approximation ratio by not being entirely greedy.



Summarizing the greedy paradigm

* Informally, (most) greedy algorithm consider one
input item at a time and make an irrevocable
(“greedy”) decision about that item before seeing
more items.

 To make this precise for any given problem we
have say how input items are represented and
how the algorithm will determine the order in
which input items are considered.

* We formalize this idea by defining how this
ordering of the input items can be done.



Dynamic programming

 Dynamic programming (DP) began as and remains a
very general algorithmic approach for solving
optimization problems. Its usage now goes beyond
that but still optimization is the main use.

* We start with our first problem, namely interval
selection but now we consider the weighted version
WISP where an interval I(j) is now a triple
(s(j), f(j), w(j)) where w(j) is the weight or profit of
the j th interval. The objective is to find a feasible
(i.e. non intersecting) set of intervals S so as to
maximize the sum of interval weights in the chosen
set.



Why not use greedy for WIS?

* |t turns out that all the ways we can think of
ordering the input items will not only fail to be
optimal but can produce arbitrarily bad solutions.
Moreover, for a general greedy formalization it
can be proven that no greedy algorithm can
provide a good solution (in the worst case).

* Some possible orderings: by non increasing
weight, by non increasing weight/interval length.



The DP approach

e Lets consider an optimal solution and once again assume
that the intervals have been sorted by non-decreasing
finishing time.

 Then in an optimal solution OPT either the last interval I(n)
was selected or it was not. If not, then we must be using
an optimal solution for the first n-1 intervals. If /(n) is in
OPT then we cannot have any intervals in OPT ending at
time s(n) or later. Furthermore (and this is the essential
aspect of DP), the intervals ending before s(n) must be
chosen optimally. (Note: once again we will define the
problem so that an interval cannot start when another one
ends. We can easily modify things if we do want to allow
an interval to start at precisely the time another ends.)



The value/profit of an optimal solution

* The previous observation leads us to want to
compute the entries (fori =1, ...n) in the
following “semantic array”: V/[i] = max profit
obtainable by a set of intervals which are a subset
of the first i intervals {I(1), ...,I(i)}. The optimal
value then is V/[n]. We also can define V/[0] = 0.

* To compute the entries of this array, it is helpful
to define pred(i) = largest index j such that f(j) <
s(i). (If we allowed a job to start where another
ended we would then have f(j) <= s(i).)



Recursively computing the V|i]

V’'[0] =0
V’[i] = max{A,B} where A =V’[i-1] and
B =V’[pred(i)]

Here B (resp. A) corresponds to the case that the i
th interval is used (resp. not used) in the optimum
solution for the first i intervals. (We can arbitrarily

assume we take the solution corresponding to case
A when A = B).

Claim: V[i] = V’[i] foralli=1,2,...n.




