CSC373: Lecture 3

Continuation of Greedy
Algorithm Discussion

The EFT Greedy Algorithm

Interval Scheduling

scheduling.

starts at s; and finishes at f;.

obs compatible if they don't overiap.

find maximum subset of mutually compatible jobs.

> Ti

Interval Scheduling: Greedy Algorit

Greedy template. Consider jobs in some natural order
Take each job provided it's compatibie with the ones ¢

[Earliest start time] Consider jobs in ascending or

[Earliest finish time] Consider jobs in ascending or

[Shortest interval] Consider jobs in ascending ord

[Fewest conflicts] For each job j, count the numbse
conflicting jobs c;. Schedule in ascending order of .

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken

courdererzezie for earhext start time

courteresample for shortest imtervo

courteresample for feaest cordlicts

Comments on the optimality of EFT

e Last class Yuli Ye gave a proof that the EFT greedy
algorithm for the interval selection problem (ISP).
The proof given was to show that the partial
solution S(i) at the end of the i th iteration is
promising in that it can be extended to an
optimal solution (using intervals not yet
considered).

* This is not the only possible proof of this result.
But before giving another type of proof, you
might rightfully ask “why bother proving this”?

Why bother proving facts about a
particular algorithm?

As we have seen, other reasonable (greedy) algorithms for ISP fail to
obtain an optimal solution (for all input instances). So while in hindsight
we can motivate EFT and convince ourselves that EFT is optimal, we need
a convincing argument (i.e. a proof at some level of being convincing) that
EFT is indeed optimal.

In addition, proofs give us insight into the limitations of an algorithm and
also what is and is not necessary to establish the desired properties. For
example, the proof does not rely on the exact manner in which we break
“ties” (between intervals with the same finishing time). Hence while an
algorithm needs exact specification, any tie breaking rule will work!

Proofs also can yield additional facts as we will see in the case of interval
colouring and MST problems

Charging arguments

A common method for proving optimality and
approximation results for a optimization algorithm ALG
is by a charging argument. For a profit maximization
problem we want to charge the profit of an arbitrary
solution (and hence that of an optimal solution OPT) to
the profit of your ALG. The goal is to argue that not too
much profit from OPT gets charged to ALG.

* For a cost minimization problem, we want to charge
the cost of ALG to an OPT solution and argue that not

too much cost from ALG is charged to OPT.

Charging argument for EFT
(as discussed in the tutorial sections)

* For the ISP problem, the profit of an algorithm
is simply the number of intervals selected. We
will write |ALG(I)| (resp. |OPT(I)) for the
profit of algorithm ALG (resp. an optimum
solution) on input set I. Then to show
optimality of EFT for ISP, it suffices to show
that there is a 1-1 function h mapping OPT(I)
into EFT(I). (Since OPT denotes an optimum
solution the mapping must be onto.)

Charging argument to obtain
approximation bound

e As stated in the first class, | like to integrate some
results about approximation algorithms as we proceed
rather than treat approximation algorithms as a
separate topic.

 We can easily adapt the EFT algorithm so as to apply to
the JISP problem. In the JISP problem we extend the
meaning of two intervals being compatible if they do

not intersect and if they do not belong to the same job
class.

* Claim: For the JISP problem we can show that the same
h is a 2-1 function mapping OPT(I) into EFT(I).

The m-ISP problem

* The m “machine” interval scheduling problem
schedules a set of intervals on m machines so

that intervals assigned to the same machine
do not intersect.

* Consider the following two extensions of the
one machine EFT algorithm:

First fit vs Best fit EFT

1. First fit EFT
Sort intervals so that f; < fa... < f,
Fori:1l.n
Let k = ming : J(i) does not intersect intervals on machine £;0 if no such £
o(i) := k % o(i) specifies if and on which machine interval J(i) is scheduled
End For

2. Best fit EFT
Sort intervals so that f, < f,... < f,
For k:1..m
e := —0 % e; specifies the latest completion for intervals on machine &
End For
Fori:1l.n
Let k = argming : 8; —e¢ > 0 or k = 0 if no such £
o(i) := k % o(i) specifies if and on which machine interval J(i) is scheduled
€ = f:
End For

Interval colo

uring

* We will now consider a minimization problem;

namely given a set of interval

s, we want to colour

all intervals so that intervals given the same
colour do not intersect and the goal is to try to
minimize the number of colours used.

* We could simply apply the m-machine ISP for

increasing m until we found t
sufficient. (Note: This is a sim
polynomial time reduction w

ne smallest m that is
ole example of a

nich is an essential

concept when we study NP-completeness.)

Greedy interval colouring

* Consider the EST (earliest starting time) for
interval colouring. Namely, having sorted the
intervals by non decreasing starting times, we
assign each interval the smallest numbered
colour that is feasible given the intervals
already coloured. (Recall that EST is a terrible
algorithm for ISP.) Note that this algorithm is
“equivalent” to LFT (latest finishing time first).

* Theorem: EST is optimal for interval colouring

Greedy interval colouring

Greedy interval colouring
Sort intervals so that s; < 82... < s,
Fori:1l.n
Let k = ming : £ # x(j) for all j < i such that the
7 interval intersects the i** interval
x(i) := k % the i"" interval is greedily coloured by the
smallest non conlficting colour
End For

Proof of optimality (sketch)

The proof technique we will use here is also
one often used for proving approximations.

The idea is to find some bound (or bounds)
that any solution must satisfy and then relate
that to the algorithms solution.

In this case, consider the maximum number of

intervals in the input set that intersect at any
given point. The number of colours must be at
least this large.

It remains to show that the greedy algorithm

will never use more than this number of
colours.

