CSC 373 Lecture 29

Announcements:

As posted, weekly TA office hour Fridays 1-2 in Pratt 378.

Term Test 2 question 3 regrading final call Course evaluations Friday or Monday? Next assignment/test date; decision now.

Today

Randomized rounding

- ¾ approximation for IP/LP for Max-Sat
- O(log m) approximation for Set cover

The Max-Sat problem as an IP

- In the (general) weighted Max-Sat problem, we are given a CNF formula F = C_1^ C^2 ...^C^m over a set of variables x_1, ...,x_n with clause C_i having weight w_i. In contrast to Max-k-Sat and Exact Max-k-Sat, each clause can have any number of literals. Let C_j^+ (resp C_j^-) be the set of all variables occurring positively (resp. negatively) in C_j. For example, if C_j = x_1 v bar x_2 v x_3, we have C_j^+ = {x_1,x_3}; C_j^- = {x_2}. An IP formulation of weighted Max-Sat is:
- maximize sum_j w_j *z_j subject to
 sum_{x_i in C_j^+} y_i + sum_{x_i in C_j^-} (1-y_i) >= z_j
 y_i in {0,1}; z_j in {0,1}
- Here the intended meaning of z_j is that clause C_j will be satisfied and the intended meaning of y_i is that the propositional variable x_i is set true (resp. false) if $y_i = 1$ (resp 0).
- The LP relaxation is 0 <= y_i <= 1, 0 <= z_j <= 1; here we do want the y_i <= 1 and z_j <= 1 constraints. Why?

Randomized rounding the LP

- Since we have forced our fractional solutions to be in [0,1], we can think of each fractional variable as a probability. Then we can do randomized rounding.
- Let {y*_i,z*_j} be an optimal LP solution so that the LP-OPT = sum w_j z*_j. We set y'_i = 1 with probability y*_i to obtain an integral solution. We do not need to round the {z*_j} variables since the desired solution is a truth assignment (which will in turn determine which clauses are satisfied). Note that every rounded solution is a solution (i.e. truth assignment) but we will need to use properties of the LP solution to derive an approximation ratio.

The analysis

- Let C_j be a clause with k literals and by renaming we will assume that C_j = (x_1 v x_2 ... v x_k). We are focusing on this one clause so say say x_1 occurred negatively | C_j, we introduce a new variable v_1 to represent {\bar x_1} and then change all occurences of x_1 to be the appropriate occurrence of v_1.
- Let $b_k = 1 (1-1/k)^k$. We will show the $Prob[C_j]$ satisfied (in the rounded solution)] is at least $b_k z^*_j$. By linearity of expectations, the contribution (in expectation) to the rounded solution of a clause C_j having k literals is then at least $b_k w_j$. (Recall that the LP-OPT is sum_j w_j z*_j) Since $(1-1/k)^k < 1/e$ (and converges to 1/e with k), the approx ratio is k = 1 1/e > 0.632. (We will need one further idea to obtain a (3/4) ratio.)

Arithmetic-Geometric mean

- In the analysis, we will need to make use of the arithmetic geometric mean inequality which states that for non negative real values:
- (1/k) { $a_1 + a_2 + ... a_k$ } >= k th root of the product $(a_1 * a_2 * ... a_k)$ or equivalently $[(1/k)(a_1 + ... + a_k)]^k$ >= $(a_1 * a_2 ... * a_k)$

Analysis continued

- Let C_j be a k literal clause and by renaming assume $C_j = x_1 v x_2 ... v x_k$. C_j is satisfied if not all of the y_i are set to 0 (when we set $y_i = 1$ with probability y^*_i).
- The probability that C_j is satisfied is then
 [1 product_i (1-y*_i)].
- probability is then at least $1 [(1/k) \{(1-y^*_1) + ... + (1-y^*_k)\}]^k$ $= 1 [(1/(k) (y^*_1 + ... y^*_k)]^k >= 1 (1-(z^*_j/k)^k)$ where the inequality is by the LP constraint:

By the arithmetic-geometric mean inequality this

 $sum_{y_i} in C_j^+y_i + sum_{y_i} in C_j^-(1-y_i) >= z_j$ (keeping in mind the renaming making literals positive) so that we just have $sum_{y_i} in C_j^+y_i$. Hence $y^*_1 + ... + y^*_k >= z^*_j$.

End of analysis for Max-Sat

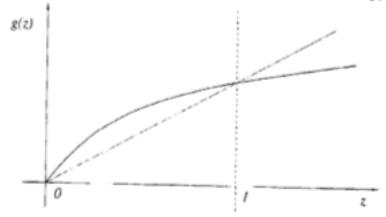
- Define $g(z) = 1 (1 z/k)^k$; then g(z) is a concave function with g(0) = 0 and $g(1) = b_k$.
- By concavity, $g(z) >= (b_k) z$ for all 0 <= z <= 1. In particular, $g(z^*) >= b_k z^*$
- Hence if C_j is a clause with k literals, then the Prob[C_j satisfied] >= (b_k) z*_j
- Like the more naive randomized alg (used for exact Max-k-Sat), this algorithm can also be de-randomized (by solving 2n LPs) to obtain a (1-1/e) approximation.
- Since the naïve alg is good for big k clauses and the (1-1/e) alg is good for small k clauses, it turns out (with a little more work) that by taking the best of these two deterministic algorithms, we get a (3/4) approximation.

$$\begin{split} 1 - \prod_{i=1} (1 - y_i) &\geq 1 - \left(\frac{\sum_{i=1}^{k} (1 - y_i)}{k}\right) = 1 - \left(1 - \frac{\sum_{i=1}^{k} y_i}{k}\right) \\ &\geq 1 - \left(1 - \frac{z_c^{\bullet}}{k}\right)^k, \end{split}$$

where the first inequality follows from the arithmetic-geometric mean inequality which states that for nonnegative numbers a_1, \ldots, a_k ,

$$\frac{a_1 + \ldots + a_k}{k} \ge \sqrt[6]{a_1 \times \ldots \times a_k}$$

The second inequality uses the constraint in LP (16.2) that $y_1 + ... + y_k \ge z_c$.



Define function g by:

$$g(z) = 1 - \left(1 - \frac{z}{k}\right)^k.$$

This is a concave function with g(0)=0 and $g(1)=\beta_k$. Therefore, for $z\in[0,1], g(z)\geq\beta_kz$. Hence, $\Pr[c\text{ is satisfied}]\geq\beta_kz_c^*$. The lemma follows. \square

Notice that β_k is a decreasing function of k. Thus, if all clauses are of size at most k,

$$E[W] = \sum_{c \in C} E[W_c] \ge \beta_k \sum_{c \in C} w_c z_c^* = \beta_k OPT_f \ge \beta_k OPT.$$

Set cover IP/LP randomized rounding

There is a very natural and efficient greedy algorithm for solving the weighted set cover problem with approximation $h_{-}d$ where $d = max_{-}i \mid S_{-}i \mid$. But we want to use this problem to give a final example of IP and randomized rounding. The following randomized algorithm will with high probability produce a cover that is within a factor $O(H_{-}d) = O(log m)$ of the optimum where m is the size of the universe. This is also an opportunity to (re)introduce a little more probability.

There is also a connection between a primal dual approach solving the LP relaxation and the natural deterministic greedy algorithm that achieves approximation ratio H_d but we will not have time to discuss primal dual algorithms.

The IP/LP randomized rounding

- The IP is to min sum_i w_i x_i
 subj to sum_{i: u_j in S_i} x_i >= 1
 x_i in {0,1} for IP; x_i >= 0 for LP
- We solve this LP
 and find an optimal solution {x*_1, ..., x*_n}.

We know that $x^*_i <= 1$ since in an optimal solution, each x^*_i is at most 1.

We treat the x^*_i values as probabilities and choose S_i (to be in our set cover) with probability x^*_i . This is a covering problem and the chosen sets will most likely not be a cover. So we will have to repeat this process enough times to have a good probability that all elements are covered.

The analysis

 It is easy to calculate the expected cost of the "partial cover" C' of sets selected by the LP optimum. Namely,

```
E[cost(C')] = sum w_i Prob[S_i is chosen]
= sum w_i x*_i = OPT-LP
```

Now we need to calculate the probability that a given u_j = u is not covered. Lets say that u occurs in sets S_1, ..., S_k. The LP solution must satisfy the constraint: sum_{i: u in S_i} x*_i >=1.