CSC 373 Lecture 29

Announcements:

As posted, weekly TA office hour Fridays 1-2 in
Pratt 37/8.

Term Test 2 question 3 regrading final call
Course evaluations Friday or Monday?
Next assignment/test date; decision now.
Today

Randomized rounding
— % approximation for IP/LP for Max-Sat

— O(log m) approximation for Set cover



The Max-Sat problem as an IP

In the (general) weighted Max-Sat problem, we are given a CNF
formula F=C 12 C/A2..2C"m over a set of variables x 1, ...,x _n
with clause C i having weight w_i. In contrast to Max-k-Sat and
Exact Max-k-Sat, each clause can have any number of literals. Let
C _j*+ (resp C_j*-) be the set of all variables occurring positively
(resp. negatively) in C j. For example, if C j=x_ 1vbarx 2vx_ 3,
we have C j*+={x 1,x 3},; C j*-={x_2}. An IP formulation of
weighted Max-Sat is:

maximize sum_jw _j *z j subject to

sum {x_iin C j2+}y i+sum {x i in C j*-}(1-y i) >=2z

y iin{0,1} ; z jin{0,1}
Here the intended meaning of z j is that clause C _j will be satisfied
and the intended meaning of y i is that the propositional variable
X_iis set true (resp. false) if y i =1 (resp 0).
The LP relaxationisO0<=y i<=1, 0<=z j<=1; here we do want
they i<=1and z j<=1 constraints. Why?



Randomized rounding the LP

* Since we have forced our fractional solutions to be in
[0,1], we can think of each fractional variable as a
probability. Then we can do randomized rounding.

e Let{y* iz* j}be an optimal LP solution so that the LP-
OPT =sumw _jz* j. We set y’ i=1 with probability
y* ito obtain an integral solution. We do not need to
round the {z* j} variables since the desired solution is
a truth assignment (which will in turn determine which
clauses are satisfied). Note that every rounded solution
is a solution (i.e. truth assignment) but we will need to
use properties of the LP solution to derive an
approximation ratio.



The analysis

* Let C jbe aclause with k literals and by renaming we will
assume thatC j=(x 1vx 2..vx k). We are focusing on this
one clause so say say x_1 occurred negatively | C_j, we
introduce a new variable v_1 to represent {\bar x_1} and then
change all occurences of x_1 to be the appropriate
occurrence of v_1.

e Lletb k= 1-(1-1/k)*k. We will show the Prob[C j satisfied
(in the rounded solution)] is at least b_k z* j. By linearity of
expectations, the contribution (in expectation) to the
rounded solution of a clause C j having k literals is then at
least b_k w_j. (Recall that the LP-OPT is sum_jw_jz* j) Since
(1- 1/k)"k < 1/e (and converges to 1/e with k), the approx ratio
is >=1-1/e >.632. (We will need one further idea to obtain a
(3/4) ratio.)



Arithmetic-Geometric mean

* |n the analysis, we will need to make use of the
arithmetic geometric mean inequality which states

that for non negative real values:

e (1/k) {a 1+a 2+...a _k}>= kthroot of the
product (a1 *a 2 *...a_k)or equivalently
[(1/k) (a 1 +..+a k)] k>=(a 1*a 2..*a k)



Analysis continued

 Let C jbe a kliteral clause and by renaming assume C j
=x 1vx 2..v x k. C jissatisfied if notall of they i
are set to O (when we set y i = 1 with probability y* i).

* The probability that C j is satisfied is then
[1—product i(1-y* i)].

* By the arithmetic-geometric mean inequality this
probability is then at least
1-[(1/k){(1-y*_ 1) +..+ (1-y*_k)}]"*k
=1-[(1-(1/k) (y* 1+..y* kK)]"k >=1-(1-(z* j/k) k
where the inequality is by the LP constraint:
sum {y iin C jM}y i+sum {y iin C j*-}1-y i)>=z j
(keeping in mind the renaming making literals positive)
so that we just have sum {y iin C j*+}y i . Hence
v*¥ 1+ .. 4y* k>=2z* j.



End of analysis for Max-Sat

Define g(z) =1 - (1 -2z/k)*k; then g(z) is a concave
function with g(0) =0 and g(1) = b _k.

By concavity, g(z)>= (b_k) z for all 0 <=z<=1. In
particular, g(z*) >=b_k z*

Hence if C jis a clause with k literals, then the
Prob[C j satisfied] >=(b_k) z* j

Like the more naive randomized alg (used for exact

Max-k-Sat), this algorithm can also be de-randomized
(by solving 2n LPs) to obtain a (1-1/e) approximation.

Since the naive alg is good for big k clauses and the

(1-1/e) alg is good for small k clauses, it turns out (with
a little more work) that by taking the best of these two
deterministic algorithms, we get a (3/4) approximation.
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Set cover IP/LP randomized rounding

There is a very natural and efficient greedy algorithm for
solving the weighted set cover problem with approximation

h dwhered=max i [|S i|. But we want to use this problem
to give a final example of IP and randomized rounding. The
following randomized algorithm will with high probability
produce a cover that is within a factor O(H _d) = O(log m) of
the optimum where m is the size of the universe. This is also
an opportunity to (re)introduce a little more probability.

There is also a connection between a primal dual approach
solving the LP relaxation and the natural deterministic greedy
algorithm that achieves approximation ratio H_d but we will
not have time to discuss primal dual algorithms.



The IP/LP randomized rounding
* ThelPistominsum iw ix_ i
subjto sum {i:u jinS i}x i>=1
x_iin{0,1}forIP; x i >=0for LP
* We solve this LP
and find an optimal solution {x* 1, ....x* n}.

We know that x* i <=1 since in an optlmal solution,
each x* iis at most 1.

We treat the x* i values as probabilities and choose S i
(to be in our set cover) with probability x* i. This is a
covering problem and the chosen sets will most likely
not be a cover. So we will have to repeat this process
enough times to have a good probability that all
elements are covered.



The analysis

* |tis easy to calculate the expected cost of the
“partial cover” C’ of sets selected by the LP
optimum. Namely,

E[cost(C’)] = sum w_i Prob[S iis chosen]

=sumw_ix* i=0PT-LP

* Now we need to calculate the probability that a
given u_j = u is not covered. Lets say that u occurs in

setsS 1,..., S k. The LP solution must satisfy the
constraint : sum {i:uinS i} x* i>=1.



