CSC 373 Lecture 28

Announcements:

As posted, weekly TA office hour Fridays 1-2 in
Pratt 37/8.

Term Test 2 question 3 regrading

Next assignment/test date; P3 finalized

Why 2W_0 <= W _1 in exact max-2-sat local search
Today

* Finish up discussion of exact-k-sat random alg

* Polynomial identities

First application: Exact Max-k-Sat

We are going to use randomization to show that a very
naive use of randomization computes a truth assignment
that (in expectation) satisfies a fraction (24k-1)/2/k of all
clauses (or in the weighted case, this fraction of the total
weight of all clauses). Let F be an exact k-CNF formula with
say m clauses.

The algorithm simply sets each variable randomly (and
independently) so that Prob[x_j=true] = Prob[x_j = false] =
1Z3

Claim: The random variable C_i =1 (resp 0) if tau(C_i) true
(resp. false) has expectation (24k-1)/2/k. Why?

By linearity of expectation
E tau[W(F)] = W*(2/k-1)/(27k) where W = sum of all clause
weights. (Compare this with oblivious local search.)

De-randomization of the algorithm

* This naive randomized algorithm is an online
algorithm in the sense that the order in which we
set the variables does not matter.

* We can de-randomize this algorithm by the
method of conditional expectations to yield a
deterministic (still online) greedy algorithm.

* Namely, let us think of the input items being the
propositional variables where we represent each
variable by the clauses in which it occurs. For
each variable we want to set its truth value so as
to maximize the expectation of the formula F
given whatever assignments have already been
made.

De-randomization continued

e Consider the first variable assignment (say to x).
E[W(F)] = (1/2) E[W(F)|x = true] +
(1/2) E[W(F)|x = false]

* Therefore at least one of these assignments must
result in at least the desired expectation and we can

C
t

. F

ecide this by computing the expectation knowing
ne sign of x in each clause to which it belongs.

aving set x appropriately, we then can consider

t

ne next variable always maintaining the weight of

satisfied clauses and the number of literals in each

u

nsatisfied clause.

From good expectation to good
probability for almost the expectation

In some sense the Max-k-Sat randomized algorithm is an example
of random sampling. For any exact kK CNF formula, if we simply
try a random truth assignment tau, it is “likely” to satisfy a “good”
number of clauses. Lets consider the # of unsatisfied clauses.

Given the expectation E, we can use Markov’s inequality to show
that the Prob[# unsatisfied >= c E] is <= 1/c. For example, say ¢ =
(8/7) then the probability is at most 7/8.

To drive this probability down, independently repeat the “trial” t
times so that the probability of always finding a tau with more
than 8/7 E unsatisfied clauses is at most (7/8)At. For example, for
k =3, we expect a 1/8 fraction of unsatisfied clauses, and the
probability of always getting more than a 1/7 fraction unsatisfied
is at most (7/8)t.

This idea of repeated indep.trials is a key aspect of randomized
algorithms. Useful fact: (1-1/t)*t <= 1/e for all t and limits to 1/e
as t goes to infinity.

Final comments on randomized and
deterministic online max-sat

* |tisinteresting that the deterministic online algorithm
(Johnson’s algorithm) that results from the de-
randomization was known before it was seen to follow from
the randomized algorithm.

* |t was proven 25 years later that Johnson’s 1974 algorithm
is a 2/3 approximation for general Max-Sat (any number of
literals per clause) Last year it was shown that Johnson’s
algorithm with a random ordering of the variables is better
than 2/3 but not as good as a 3/4 approx for Max-Sat which
can be done with IP/LP and randomized rounding. . Current
best ratio .797 by semi definite programming algorithm.

* |t was shown at the same time that a different randomized
online algorithm achieves a % approx for Max-Sat. There is
evidence that this % approx alg cannot be de-randomized.

Polynomial identities; more random
sampling

 We want to exploit the fact “low degree” non zero
polynomials have “few” zeros. In probabilistic terms
when evaluated on a random point, a low degree non
zero polynomial will likely not evaluate to zero. More
precisely, we have the Schwartz-Zipple Lemma: Let f
be a non zero m-variate polynomial (say over a ring R)
of degree d >=0. Let each r i be randomly chosen
from a subset S of R. Then Prob_[f(r 1,....,r m)=0]
<=d/[S].

 We will consider two applications relating to
polynomial identities, namely testing a matrix
multiplication algorithm, and determining if a
symbolic determinant is identically zero.

Testing if C= A*B

* We might have a fast but not proven matrix
multiplication algorithm. We want to use it but would
like to be confidant that when using it for a given input
A, B, it is unlikely to have made a mistake. (Debugging vs
testing vs proving correctness) Suppose these are nxn
matrices with elements in aring R (eg integers). We
want to be able to test that the result C = A*B and do
so much faster than say using a standard well proven
algorithm (say with time n”3).

* Let S be an arbitrary subset of R and choose a random
vector x in $”n. Now test if Cx = A*(Bx). (Time 3n"2)

* Claim: If Cis not A*B, Probability[Cx = A*(Bx)] <=1//S]

Symbolic Determinant

Recall the definition of a matrix determinant det A:
sum_{permutations pi} (-1)"*sgn(pi) prod_{i} a_{i,pi(i)}
The definition makes sense when the matrix elements
are in any ring R; in particular, we can have R can be

ring of polynomials in variables x and say integer or
rational coefficients.

Let A be an n x n matrix and say each matrix entry a_ij
is a linear polynomial, then det(A) is a degree n
polynomial in the variables x.

The symbolic determinant problem is to determinant
whether or not det(A) is the zero polynomial.

Motivation for symbolic determinant

e Suppose we consider the adjacency matrix for a (n,n)
pipartite graph G. Suppose we wish to determine if G
nas a perfect matching. As we have seen, this
oroblem can be solved in poly time by a
transformation to max flow. But the max flow
algorithm seems to be inherently sequential.

* We can solve the perfect matching problem by a
transformation to the symbolic det problem. Namely,
let A G be defined by a_ij =x _ijif (i,j) is an edge; else
0. That is, the entries are linear in the variables x.

* |tis easy to observe that G has a perfect matching iff
the det(A_G) is not the zero polynomial.

The complexity of symbolic det

As a polynomial, det(A) could have n! terms and hence
just writing out det(A) is not feasible for large n.

But since det(A) is a degree n poly in the x_ij, we can
invoke the Schwartz-Zipple lemma using say a set S of
scalars with say [S] >=2n. Then assuming A is not the
zero polynomial, prob_{s uniform random in S}
[det(A]a =s) =0] is at most %:. Note that det(A/a=s)
can be computed as fast as matrix product and can be
efficiently computed in parallel.

The symbolic det problem is one of the main examples
of a decision problem that can be computed efficiently
with randomization but (currently) not known to be
deterministically computed in poly time.

