CSC 373 Lecture 27

Announcements:

As posted, weekly TA office hour Fridays 1-2 in
Pratt 37/8.

Term Test 2 question 3 regrading
Next assignment/test date

Hint for question 1b

Today

* Finish IP/LP rounding.

— Review and finish makespan on unrelated machines.

— Max Cut as an IP
— Start randomized algorithms



IP/LP with a non naive rounding.

* The makespan problem for the unrelated machines
model. The input consists of a given m (the number
of machines) and njobsJ 1,...,J nwhere each job J j
is represented by avector<p 1j,p 2j..,p_mj>where
p_ij represents the processing time of job J j on
machine i. WLG m <=n.

* We will sketch a 2-approximation IP/LP rounding
algorithm. This is the best known poly time
approximation and it is known that it is NP hard to
achieve better than 3/2 approximation even for the
special case of the restrictive machines model for
which every p_ij is either some p_j or infinity.

* Note: Unlike identical machines case, | do not know
of any greedy or local search or DP O(1) approx alg.



In the IP formulation, the problem is:

minimize t subject to
sum {1<=1<=m}x {ij} =1 for each jobJ j.
sum {1 <=j <=n}p_ij x_{ij} <= tfor each machine.

x_{i,j}in {0,1} The intended meaning is that
x_{ij} =1 iff jobJ jis scheduled on machine .

The LP relaxation is that 0 <= x_ij; (<=1 implied)

The integrality gap is unbounded! Consider one job

with processing time m, which has OPT = m and
OPT {LP}=1.



Getting around the integrality gap

e The IP mustsetx {i,j}j=0if p {i,j} >t whereas

the fractional OPT does not have this constraint. We
want to say for all (i,j): “if p_{i,j} > t then x_{i,j} = 0"

But this isn’t a linear constraint!

Since we are only hoping for a good approx, we can
assume all p_ij are integral. We can then use binary
search to find the best LP bound T by solving the
search problem LP(T) for fixed T eliminating the
objective function and then removing any x _{i,j}

having p_{i,j} > T. We clearly have that IP-OPT >=T.



Rounding of LP(T) solution.

 The LP(T) solution x* jj is the solution of a system of
m+n equations over the mn variables x_ij. LP Theory
tells us that when there is a solution to this system
there is a (so-called basic) solution x*ij with at most
m+n positive values. This implies by counting that
there are at most m fractional (not integral) values.
If x*ij = 1 then we assign job j to machinei. The
remaining part of the proof (using more LP theory)
is to show that there is a matching between the
fractional x*ij and the machines.



A non obvious [P representation

e Consider the Max Cut problem. We can think of a
solution as a choice about which vertices to (say) put
into A in an (A,B) cut. We could have variables y i
{+1,-1} with the intended meaningy i=1 (resp -1) iff
vertex v_iin A (resp. B).

e Then we would want to

maximize sum_{1<=i<j<=n}(1/2) w(ij) (1-y iy j)
subjtoy iin{+1,-1};i.e.y i"2=1

Problem! While this leads to a very useful quadratic
program (and a .878 approx), it is NOT a linear program.



Max cut as an IP

Instead we will think of a cut as the edges crossing the

cut(A,B) and have a {0,1} variable x_e for every edge e

= (u,v) with the intended meaning that x e = 1 iff (u,v)

in the cut.

Now we need to find inequalities that will insure that

the {x e | x e =1}defines a cut.

This isn’t at all obvious but here is what works.

Max sum _{ein E} w_e x_e subjto x _ein{0,1}

e x {ij}+x {jk}>= x_{ik}; x_{ik} +x_{kj} >= x_ij, etc
i.e. all permutations for every triangle (v_i,v_j,v k)

o x {ij} +x {ik} +x_{jk} <=2



Why does this work?

You can think of these "triangle inequalities" as saying that the
possible sizes of a cut for each triangle are 0 or 2.

Clearly every cut must satisfy these constraints and conversely we
can show that every {0,1} solution of this IP defines a cut. This can
be seen by the following argument:

. Define a relation i ~j if x_{ij}=0 or i=j

Show this is an equivalence relation: transitivity is the only thing
to check, and by the triangle condition x_{ij} = x_{ik} = 0 implies
x_{jk} =0.

Show that there are at most 2 equivalence classes. This follows
from the second triangle condition; if i,j,k are in three different
classes, then x_{ij} + x_{ik} + x_{jk} = 3. The equivalence classes are
the cut.



Final topic of course: randomization

We will show how to use randomization to either
speed up computations and/or to improve an
approximation and/or as a step towards a
deterministic algorithm.

There are computational settings (simulation,
cryptography, sublinear time algorithms) where
randomization is provably necessary.

There are also problems where we do not know how
to solve a problem efficiently without randomization.

BUT as far as we know it could be that randomized
polynomial time = polynomial time. In fact, this
seems to be the current wisdom since if not the case
then seemingly stranger things would result.

We will recall probabilistic concepts as needed.



First application: Exact Max-k-Sat

We are going to use randomization to show that a very
naive use of randomization computes a truth assignment
that (in expectation) satisfies a fraction (24k-1)/2/k of all
clauses (or in the weighted case, this fraction of the total
weight of all clauses). Let F be an exact k-CNF formula with
say m clauses.

The algorithm simply sets each variable randomly (and
independently) so that Prob[x_j=true] = Prob[x_j = false] =
1Z3

Claim: The random variable C_i =1 (resp 0) if tau(C_i) true
(resp. false) has expectation (24k-1)/2/k. Why?

By linearity of expectation
E tau[W(F)] = W*(2/k-1)/(27k) where W = sum of all clause
weights. (Compare this with oblivious local search.)



De-randomization of the algorithm

* This naive randomized algorithm is an online
algorithm in the sense that the order in which we
set the variables does not matter.

* We can de-randomize this algorithm by the
method of conditional expectations to yield a
deterministic (still online) greedy algorithm.

* Namely, let us think of the input items being the
propositional variables where we represent each
variable by the clauses in which it occurs. For
each variable we want to set its truth value so as
to maximize the expectation of the formula F
given whatever assignments have already been
made.




De-randomization continued

e Consider the first variable assignment (say to x).
E[W(F)] = (1/2) E[W(F)|x = true] +
(1/2) E[W(F)|x = false]

 Therefore at least one of these assignments must

have the desired expectation and we can decide this

by computing the expectation knowing the sign of x
in each clause to which it belongs.

* Having set x appropriately, we then can consider
the next variable always maintaining the weight of
satisfied clauses and the number of literals in each
unsatisfied clause.



From good expectation to good
probability for almost the expectation

In some sense the Max-k-Sat randomized algorithm is an example
of random sampling. For any exact kK CNF formula, if we simply
try a random truth assignment tau, it is “likely” to satisfy a “good”
number of clauses. Lets consider the # of unsatisfied clauses.

Given the expectation E, we can use Markov’s inequality to show
that the Prob[# unsatisfied >= c E] is <= 1/c. For example, say ¢ =
(8/7) then the probability is at most 7/8.

To drive this probability down, independently repeat the “trial” t
times so that the probability of always finding a tau with more
than 8/7 E unsatisfied clauses is at most (7/8)At. For example, for
k =3, we expect a 1/8 fraction of unsatisfied clauses, and the
probability of always getting more than a 1/7 fraction unsatisfied
is then at most (7/8)/t.

This idea of repeated indep.trials is a key aspect of randomized
algorithms. Useful fact: (1-1/t)*t <= 1/e for all t and limits to 1/e
as t goes to infinity.



Polynomial identities; more random
sampling

 We want to exploit the fact “low degree” non zero
polynomials have “few” zeros. In probabilistic terms
when evaluated on a random point, a low degree non
zero polynomial will likely not evaluate to zero. More
precisely, we have the Schwartz-Zipple Lemma: Let f
be a non zero m-variate polynomial (say over a ring R)
of degree d >=0. Let each r i be randomly chosen
from a subset S of R. Then Prob_[f(r 1,....,r m)=0]
<=d/[S].

 We will consider two applications relating to
polynomial identities, namely testing a matrix
multiplication algorithm, and determining if a
symbolic determinant is identically zero.



Testing if C= A*B

* We might have a fast but not proven matrix
multiplication algorithm. We want to use it but would
like to be confidant that when using it for a given input
A, B, it is unlikely to have made a mistake. (Debugging vs
testing vs proving correctness) Suppose these are nxn
matrices with elements in aring R (eg integers). We
want to be able to test that the result C = A*B and do
so much faster than say using a standard well proven
algorithm (say with time n”3).

* Let S be an arbitrary subset of R and choose a random
vector x in $”n. Now test if Cx = A*(Bx). (Time 2n"2)

* Claim: If Cis not A*B, Probability[Cx = A*(Bx)] <=1//S]



