CSC 373 Lecture 26 #### **Announcements:** So far four requests for TA office hour. Will announce TA office hour (starting this week) on web page. Test graded out 45 with 50 being maximum obtainable (and obtained). #### Today Answer to question about one constraint IP - Continue IP/LP rounding. - f-frequency set cover - Start makespan on unrelated machines. ### NP hardness of IP with one constraint - Lets consider say a minimization problem in the form: min sum c_i x_i subject to a single constraint: sum a_i x_i R b_i where R could be = or >=. We also have x >= 0. Lets just consider the case that b and all a_i are positive integers. - If R is =, then just to determine if there is any feasible solution is NP hard since we then have an integer (rather than 0-1) version of the subset sum problem. But the proof of the transformation of 3SAT to Subset-Sum also shows that the integer version is also NP-hard. - If R is >= , then determining feasibility is easy. But if we want to minimize the objective *sum* a_i x_i then we are again solving the integer Subset-Sum problem. ### Figure 34.19 of CLRS | 8220 | LEO E | 4.30 | geen. | 500 | 100 | 302 | 20/4 | 10% | |--------|-------|------|-------|-----|-----|-----|------|-----| | v_1' | = | 1 | 0 | 0 | 0 | 1 | 1 | 0 | | 86 | | | | | | Zψ | 100 | V. | | v_2' | = | 0 | 1 | 0 | 1 | 1 | 1 | 0 | | v_3 | = | 0 | 0 | 1 | 0 | 0 | 1 | 1 | | 33 | | | 1513 | | | 颇 | 回應 | | | s_1 | = | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | s_1' | - | 0 | 0 | 0 | 2 | 0 | 0 | 0 | | 髓 | | | | 36 | | 916 | | 遊 | | s_2' | = | 0 | 0 | 0 | 0 | 2 | 0 | 0 | | s_3 | = | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | | | | | | 高温 | | | MI. | | 54 | = | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | s_4' | = | 0 | 0 | 0 | 0 | 0 | 0 | 2 | | t | = | 1 | 1 | 1 | 4 | 4 | 4 | 4 | ## Set cover and f-frequency set cover - We are given a collection of (possibly weighted) sets C = {S_1, ...S_n} over a universe U. The set cover problem is to find a minimal size (weight) subcollection C' that covers all the elements in U. - Set cover generalizes vertex cover and turns out to be hard to approximate (given well believed assumptions about NP) better than H_m where m = |U| is the size of the Universe. There is a natural greedy algorithm that will achieve an approximation of H_d where $d = max_i |S_i|$. - f-frequency set cover and vertex cover as 2-frequency set cover problem with U = E and sets $S_i = \{e \mid e \text{ adjacent to vertex } v_i\}$. ## The IP/LP for f-frequency set cover We have essentially the same IP/LP rounding algorithm for the f-frequency set cover problem. Minimize sum $w_i * x_i$ subj to $Sum_{i: u_j in S_i} x_i >= 1$ for each $u_j in U; x_i in {0,1}.$ The meaning is that $x_i = 1$ iff set S_i is in the cover. The LP relaxation is to relax the integrality condition to $x_i >= 0$. Again, it follows that an optimal LP solution also satisfies $x_i <= 1$. Suppose x^* is an LP optimum. We apply the naive rounding $x'_i = 1$ iff $x^*_i >= 1/f$. # IP/LP with a non naive rounding. - The makespan problem for the unrelated machines model. The input consists of a given m (the number of machines) and n jobs J_1,...,J_n where each job J_j is represented by a vector <p_1j,p_2j,...,p_mj> where p_ij represents the processing time of job J_j on machine i. WLG m <= n. - We will sketch a 2-approximation IP/LP rounding algorithm. This is the best known poly time approximation and it is known that it is NP hard to achieve better than 3/2 approximation even for the special case of the restrictive machines model for which every p_ij is either some p_j or infinity. - Note: Unlike identical machines case, I do not know of any greedy or local search or DP O(1) approx alg. In the IP formulation, the problem is: minimize t subject to $sum_{1} <= l <= m$ $x_{i,j} = 1$ for each job J_{j} . $sum_{1} <= j <= n$ $p_{ij} x_{i,j} <= t$ for each machine. $x_{i,j} = 1$ iff job J_{j} is scheduled on machine i. The LP relaxation is that $0 <= x_i j$; (<=1 implied) The integrality gap is unbounded! Consider one job with processing time m, which has OPT = m and $OPT_{LP} = 1$. ## Getting around the integrality gap • The IP must set $x_{i,j} = 0$ if $p_{i,j} > t$ whereas the fractional OPT does not have this constraint. We want to say for all (i,j): "if $p_{i,j} > t$ then $x_{i,j} = 0$ " But this isn't a linear constraint! Since we are only hoping for a good approx, we can assume all $p_{-}ij$ are integral. We can then use binary search to find the best LP bound T by solving the search problem LP(T) for fixed T eliminating the objective function and then removing any $x_{-}\{i,j\}$ having $p_{-}\{i,j\} > T$. We clearly have that IP-OPT >= T.