CSC 373 Lecture 23

Review from lecture 22:
e Return to local search
* The basic local search format

e Mention of oblivious vs non-oblivious local
search

Today
 (Weighted) Max Cut
e Exact Max-k-SAT (from Khanna et al, 1999)



The basic local search meta-algorithm

* |nitialize S
While there is a “better solution” S”in Nbhd(S)
S:=5
End While

* Here “better” can mean different things. For a
search problem, it can mean “closer” to being
feasible (in some sense); for an optimization
problem it usually means being an improved
solution.



The weighted max cut problem

 Let G=(V,E) be a graph with non-negative edge
weights. In the (weighted) max cut problem, the goal
is to find a cut so as to maximize the cardinality (resp.

weight) of the cut.

* Asin min cuts, acutis a partition (A,B) of the
vertices and the weight of the cut (what we called the
capacity in the max flow-min cut setting) is the sum
of weights of edges (u,v) such thatuin A, vin B.

* There is a simple local search algorithm that achieves
approximation ratio 2 and it is still an open problem if
any greedy-like or local search algorithm can do
better than this ratio.



Single move local search

* Let (A,B) be a partition. (Note that in this problem
every partition is feasible.) Then N_d(A,B) (i.e.
say as denoted by the characteristic vector of A)
is the neighbourhood of partitions (i.e. char.
vectors) at distance at most d from (A,B).

* Choose any initial partition (A,B)

While there is a better partition (A,B’) in N_1(A,B)
(A,B):=(A,B’)
End While



The locality (totality) gap

* The single move algorithm provides a 2
approximation; that is, when the algorithm
terminates, the value of any (global optimal)
solution will be at most twice the of the weight of
the local search solution (i.e a local optimum).

* |nfact, if Wis the sum of all edge weights, then
any local optimum (A,B) has value at least W/2.

e This kind of ratio is called the absolute ratio or
the totality ratio.)



Proof of totality gap

* WLG, say G is a clique by setting any missing edge
weight to O.

. Given a local opt, we have for all u in A:

sum {vin A} w(u,v) <=sum {vin B} w(u,v)
or else u can be moved to B.

Summing over all uin A
2 sum _{u,vin A} w(u,v)
<= sum {ulin A, v \in B} w(u,v)
= w(A,B)



Proof continued

 We repeat the argument for set B to obtain

e 2sum {uvin B} w(u,v)
<=sum_{uin A, vin B} w(u,v) = w(A,B)

* Adding these inequalities and dividing by 2, we
get sum {u,vin A} w(u,v) + sum {u,vin B} w(u,v)

<=w(A,B)
Adding w(A,B) to both sides we get
W<= 2 *w(A,B)



Running time of the algorithm

* The algorithm clearly terminates since there are
only finitely (but unfortunately exponentially)
many partitions.

e KT say itis an open problem if there is a way to
find a local optimum in polynomial time. But one
can achieve a ratio as close as we want to 2 in
polynomial time by looking for a solution (A'B’)
which is sufficiently better; namely w(A'B') is >=
(1+epsilon/n) w(A,B) for arbitrarily small epsilon.

 Modified alg achieves 2 * (1 + epsilon) approx. in
(n/epsilon) log W iterations.



Final comment on this algorithm

Using the neighburhood N_d(S) for any
constant d (or even sublinear o(n) Hamming
distance) will not essentially improve the
oound.

t is an open problem if there is any “simple
combinatorial algorithm” that can do
substantially better than this very simple local
search algorithm.



Exact Max-2-Sat

 Let Fbe an exact 2 CNF formula;
F=C 172 C2.."C m
where C i =(ell i*"1vell i"2)andell i%j is a
literal in {x_k, barx k| 1 <=k<=n}.

. n the weighted version, each C i has a weight
w_I.

* The goal is to find tau so as to maximize w(F/tau),
the weighted sum of satisfied clauses.

 This is a constraint satisfaction problem



The natural oblivious local search

* A natural oblivious local search algorithm uses a
Hamming distance d neighbourhood

N _d(tau) = {tau’: tau and tau’ differ on at most d
variables }

Choose any initial truth assignment tau
While there exists a truth assignment tau in N_d(tau)
such that W(tau’) > W(tau) set tau :=tau’
End While
NB: in what follows | will switch to approx ratio < 1.



How good is this algorithm?

* |t can be shown that for d = 1, the totality ratio for
this local search algorithm is 2/3 (and more generally
for exact Max-k-Sat the ratiois k/(k+1). This ratio is
a tight ratio for any d = o(n).

 Thisis in contrast to a naive greedy algorithm
derived from a randomized algorithm that achieves
totality ratio (27k-1)/2/k.

* (“In practice” the local search algorithm actually
performs better than the naive greedy and one could
always start with the greedy algorithm and then
apply local search.



Analysis of oblivious local search for
exact max-2-sat

et tau be a local optimum and letS O (resp. S 1,S 2)
oe those clauses that are not satisifed (resp. satisfied
oy exactly one literal, by two literals) by tau and let
W(S _i) be the corresponding weight .

Let A j(resp. B j, resp. C j) be those clauses
containing the variable x_j such that no literal (resp.
exactly the one literal involving x_j, both literals) in
any clauseinS O(respS 1, S 2)is satisfied by tau.
Since tau is a local optimum, the weight of these
clauses must satisfy W(A_j) <= W(B_j). Summing over
all variables x j, 2 W(S 0 )<= W(S 1) noting that
each clause in S§_0 gets counted twice.




Finishing the analysis

* |t follows then that the ratio of clause weights
not satisfied to the sum of all clause weights is
W(Ss 0)/ (W(S 0 +W(S 1)+ W(S 2)
<=W(S 0) /(35 0) + W(S 2)
<=W(S_0)/3W(S_0)

* |tis not easy to verify but there are examples
showing that this 2/3 bound is essentially
tight for any N_d neighbourhood for d = o(n)
and it is also claimed that the bound is at best
4/5 whenever d < n/2. Ford = n/2 the
algorithm would be optimal.



Using the proof

* Asin some previous examples (e.g. distinct edge
weights imply a unique MST), we can learn
something from this proof to improve the

performance.

* Note that we are not using anyt
W(S _2). If we could guarantee t

ning about
nat W(S_0) was at

most W(S_2) then the ratio of c

ause weights not

satisfied to all clause weights would be 1/4 .

 We can do this by enlarging the

neighbourhood

to include tau’ = the complement of tau.



The non oblivious local search

* Now we return to the idea previously
mentioned that clauses in S 2 are more
valuable than clausesin S 1 (because they are

able to withstand any single variable change).

* The idea thenis to weight S_2 clauses more
heavily. Specifically, in each iteration we
attempt to find a tau’ in N_1(tau) that
improves the potential function
3/2W(S 1)+ 2W(S_2) instead of the oblivious
W(Ss 1)+ W(S_2).



Sketch of % totality bound for this non
oblivious local search

e Let P_ij(resp. N_i,j) be the weight of all
clausesin S _j containing x_j (resp bar x_j).

* Here is the key observation for a local
optimum tau wrt the stated potential:
-(1/2) P_2,j—(3/2) P_1,j
<=(1/2) N_1,j+(3/2) N_0,j

e Summing over variablesP 1=N_1=W(S_1),
P2=2W(S 2)and N_0=2 W(S 0) and using
the above inequality we obtain
3W(S 0)<=W(S5 1)+ W(S 2)



