CSC 373 Lecture 22

Review from lecture 20: PRIME and FACTOR
transforming 3CNF to SUBSET-SUM

* Finish up transformation to SUBSET-SUM and the
resulting NP completeness for PARTITION and
makespan.

e Start (actually return) to local search
e Oblivious vs non-oblivious
* (Weighted) Max Cut and Exact Max-k-SAT



Exact 3SAT transforms to SUBSET-SUM

 We need to transform an exact 3CNF formula F (say with n

variables and k clauses) to an input instance, call it phi(F)
= (U,t), for SUBSET-SUM so that F is satisfiable iff phi(F) is
in SUBSET-SUM.

* We create a (2n+2k) x (n+k) array as follows: we have 2
rows for each variable, one corresponding to setting the
variable true and the other for false. We also have 2 rows
for each clause to adjust for how many literals are being
made true for a given assignment. .



3SAT to SUBSET-SUM continued

* The first n columns correspond to variables and
the last k columns correspond to clauses. For a
given variable row, the corresponding variable
column has a 1, and each clause hasaOor 1
depending on whether or not the variable setting
satisfies the clause. Each row is then viewed as
one of the integer inputs in U and the target t is
the number (say in decimal so that there are no
carries) represented by 111...4444 where there
are 1's in the column corresponding to the
variables and 4’s in the columns corresponding to
clauses. See figure 34.19



Figure 34.19 of CLRS

lfqurc .19 The reduction of 3-CNF-SAT to SUBSET-SUM. The formula in 3-CNF is @ =
< -'-?2/\(.'_1 ACy where Cy = (g Vo V=I) C = (ayvmap v X1, Cy = (~xyV=x; V1)
ad Cyg =(x; vy vn) A satislying assignment of @ is {x; = 0, 1;; =0 xy = |) Th.e Q:l S
produced by the reduction consists of the base-10 nambers shown; reading from top to botlom
3 = [1001001, 1000110, 100001, 101110, 10011 L1I00 1000 200 100 300 10 M 1 A+



Local Search

 We now return to the topic of local search
which we briefly introduced in the context of
the Ford Fulkerson FF algorithm for max flow
(although it is not usually presented in this
context).

 We will consider a very small selection of
reasonably basic applications of local search
following material is sections 12.2,12.4-12.7 of

KT as well as material from my spring 2011
CSC373 course.



The basic local search meta-algorithm

* |nitialize S
While there is a “better solution” S”in Nbhd(S)
S:=§
End While

* Here “better” can mean different things. For a
search problem, it can mean “closer” to being
feasible (in some sense); for an optimization
problem it usually means being an improved
solution.



Many issues concerning local search

How do we define the local neighbourhood and
how do we choose an S” in Nbhd(S)?

Can we guarantee that a local search algorithm
will terminate? And if so, how fast will the
algorithm terminate?

Upon termination how good is the local optimum
that results from a local search optimization?

How can we escape from a local optimum
(assuming it is not optimal)?



Locality gap

 The worst case ratio (over all local optimum)
between a local optimum and a global
optimum is called the locality gap.

* As such the approximation ratio is at least as
good as the locality gap and could sometimes

be better if (say) we never reach a worst case
local optimum from the initial solution.



Some options for the vanilla scheme

How to choose the initial solution? Often one
takes a naive or trivial solution, or a random
solution, or a solution computed by a simple or
efficient method such as a greedy algorithm.

How to define the local neighborhood Nbhd(S)of a
solution S? In problems where a solution is a

subset or equivalently a vector <x 1, ...,n_n>then
a natural neighborhood (but not the only one) is a
Hamming distance d neighborhood; i.e. the set of
vectors z: z_i not equal to x_i for at most d indices.



Non oblivious local search

* For an optimization problem by "better” we usually
mean with respect to the given objective function. Such

ocal search algorithms have been called oblivious
ocal search"..

* |f instead we interpret better" with respect to some
related potential function, this is called non oblivious
local search. (We will soon see an example of non-
oblivious local search).

* For either oblivious or non-oblivious local search do we
take any better solution or do we search for the best
solution (i.e. a “greedy local search”) in Nbhd(S)?




Stochastic local search

* Beyond all these issues, most heuristic (and one
might say practical) applications of local search
allow ways to escape local optima in some
controlled way. Usually this is done in some
randomized method and the terminology used is
“'stochastic local search'.

. Perhaps the best known generic method in this
regard is a parameterized method called
“simulated annealing''. For satisfiability problems,
there is a popular class of stochastic local search
methods under the name WALKSAT.




Local search with Hamming Nbhd

 We will consider three applications of local
search approximation algorithms where the
neighborhood is defined by a small Hamming
distance; namely, max cut, max-2-sat, and max
independent set in k+1 claw-free graphs.

* We start with weighted max cut which is from
the text (sec 12.4). This is an NP-hard problem
and the best approx ratio known for a polynomial
time algorithm is .878 (or 1/.878~ 1.139 for ratios
> 1) using semi-definite programming SDP.



The weighted max cut problem

* Let G =(V,E) be a graph with non-negative edge
weights. In the (weighted) max cut problem, the goal
is to find a cut so as to maximize the cardinality (resp.
weight) of the cut.

* Asin min cuts, acutis a partition (A,B) of the
vertices and the weight of the cut (what we called the
capacity in the max flow-min cut setting) is the sum of
weights of edges (u,v) such that uin A, vin B.

* There is a simple local search algorithm that achieves
approximation ratio 2 and it is still an open problem if
any greedy-like or local search algorithm can do better

than this ratio.



Single move local search

* Let (A,B) be a partition. (Note that in this problem
every partition is feasible.) Then N_d(A,B) (i.e.
say as denoted by the characteristic vector of A) is
the neighbourhood of partitions (i.e. char.
vectors) at distance at most d from (A,B).

* Choose any initial partition (A,B)

While there is a better partition (A,B’) in N_1(A,B)
(A,B):=(A’B’)

End While



