CSC 373 Lecture 19

Review: NP sets, NP completeness, a tree of NP
complete problems.

Reducing a search/optimization problem to a
corresponding decision problem.

In tutorial, 3SAT transforms to directed HC
* [PvslLP
* NP vs co-NP
* Integer primality and factoring

e One more transformation: 3SAT transform to
subset sum. Thus makespan is NP hard.



NP Sets (decision problems)

What do these sets (say SAT and CLIQUE) have in
common? They both can be easily “verified” by a
succinct “certificate”.

For example, suppose | am “all powerful” (or perhaps
just as good, suppose | am just a very lucky at
guessing).

Then if | want to prove that Fis in SAT, | show you a
satisfying truth assignment (call it tau) and then you
(or an efficient algorithm) can easily verify that Fis
satisfied by tau. Tau is the succinct certificate.

Similarly if | want to convince you that (G,k) is in
CLIQUE, then | show you a subset of k nodes V' and
you verify that V’is a clique in G.

III



The definition of an NP set

* Let L be a set (i.e. a subset of strings over some
finite alphabet). Then L is in NP if there exists a
polynomial time predicate (i.e. 0-1 valued
function) R(x,y) and polynomial q such that x in L
iff there exists a y: [y/ <=q(/x/[) and R(x,y) is true
(i.e. R(x,y) = 1). That is, every x in L has a succint
certificate y (where the poly g defines
“succinct” ) that allows for efficiently verifying
that x in L (where poly time R defines efficient

verification) .



All the problems studied to date have
corresponding NP decision problems

* (Job) Interval scheduling decision problem: For a
set S of weighted intervals (resp. jobs for the JISP
problem), and bound W, does there exist a subset
of intervals (jobs) with profit at least S.

* The knapsack decision problem: For a set of items,
size bound W and value bound V, does there exist a
subset of items with total size at most W and value
at least V.

* For sets in polynomial time (i.e. in P) no certificate
is needed. Clearly P is a subset of NP.



Reducing a search/optimization to a
corresponding decision problem

* The Sat search problem is to find a satisfying assignment for F
(if one exists) or say that F is not satisfiable. This efficiently
reduces to the SAT decision problem: assuming that Fis
satisfiable, then choose any variable x and then use SAT to
determine whether or not F’ = (F[x = true) is satisfiable; if not

then F” = (F[x =false) is satisfiable. We then continue with F’
or F”.

* To reduce the weighted JISP problem to the corresponding
decision problem we first use binary search and the decision
problem to determine the optimal value. Then we consider
each interval (in the input set) and ask if we can remove that
interval and still achieve the optimal value. If so we eliminate
that interval and with the intervals that remain.



NP Complete Sets

* Let <=be a poly time reducibility (or poly time
transformation). We will say that a set (decision
problem) Lis NP hard if foreveryl’in NP, L <=L.
Hence if L is NP hard but is also in P, then P = NP

 Lis NP complete if L isin NP and NP hard. Hence P =
NP iff there is any NP complete problem that is in P.

* Why do we religiously believe that P is not equal to
NP? Because there are thousands of NP complete
problems that have been thought about
independently before and after the concept was
defined and no one has been able to find a
polynomial time algorithm for them. Moreover, the
best algorithms for these natural NP problems are all
exponential time (i.e. c*n for some ¢ > 1)



The tree of NP completeness

* How do we show that a set L is NP complete?
Usually (but not always) it is relatively easy to
show that L is in NP. Usually it is the NP hardness
that can sometime be quite non trivial to show. In
fact, one might wonder how we show that any
set L is NP hard since it requires showing
something about every L’ in NP. But suppose we
do have one set L which is NP complete. Then if if
we find another L* in NP such that L <=L* then
L* is also NP complete by the transitivity of <=. So
starting with some NP complete L we can start to
evolve a tree of NP complete problems.



SAT at the root of a tree of NP

completeness and some history

* We will postpone establishing SAT (or Circuit SAT as in
CLRS) as the root of a tree of NP completeness and just
take that as a fact. SAT was the set that Cook (1971) first
used and he then showed that other problems were also
NP complete (such as CLIQUE). Cook also noted that
“integer factoring” was in NP but not necessarily
complete. Karp soon thereafter provided a list of ~20
natural problems which were also NP complete and that
was followed by thousands more. The Garey and Johnson
book is perhaps the most referenced book in CS.

 The concept of P as a model for “efficient computation”
was already in work by Cobham and Edmonds. Levin (in

the FSU) independently defined NP completenesss but his
work was not known outdside of the FSU until about 1973.



Integer programming IP

IP is an example of a widely studied NP complete
problem.

It is relatively easy to establish that /P (and {0,1} IP)
is NP hard.

It takes a little work to prove that /P is in NP. WHY?
This is unlike the usual situation where showing a
problem is in NP is often quite obvious.

We will later consider linear programming LP for
which there does exist a (weakly) polynomial time
algorithm (discovered in the 70s) and for which
there has been a “practical algorithm” since the 40s



NP vs co-NP

e co-NP. We say that a language L is in co-NP if its
complement (the strings notin L) is in NP. (We
“don’t worry about” strings that do not encode
input instances.) Note that P = co-P but the (again
almost religious) belief is that NP is not equal to
co-NP. For example, what certificate could you
use so that | could verify that a formula F is not

satisfiable, or that G does not have a clique of size
(say) k= [V[/27?



The NP vs co-NP belief

By definition, L” poly time transforms to L iff the
the complement of L’ poly time transforms to the
complement of L.

Also if L’ transformsto L and Lisin NP, then L’ in
NP. (Does not follow for poly time reduction.)

It follows that NP = co-NP iff any NP complete set
(with respect to transformation) L is in co-NP.

So if L and its complement are both in NP we
then have “strong evidence” that L is not NP
complete.

If P is not equal to NP, then it can be proven that
there exists non complete Lin NP —P.



