CSC 373 Lecture 16

Announcements: Regrading policy; question 2
of term test 1; 5 questions on new
assignment; TA office hour?

Review: Any questions regarding flow
networks?

New topic NP sets (decision problems) and NP
completeness. Read chapter 8; you can just
initially skim sections 8.5,8.6,8.7

Motivation, Polynomial time, Polynomial time
reduction, Some simple reductions

Mainly a board talk to slow down



Motivation

* One of the perhaps greatest ideas in computing is
that we basically all agree on that it means for a
(discrete) computational problem to be computable;
namely, we equate the intuitive concept of
“computable” with the mathematically precisely
defined concept of Turing computable. This is the so-
called Church-Turing thesis (from ~1936) and
although one can never prove such a hypothesis, it is
almost universally believed. Why?

* One can use diagonalization to show that for any
time bound T(n), there are computable functions not
computable within time T(n). So what does it mean
to be “efficiently computable” ?



Efficient Church Turing thesis

* We will equate the intuitive concept of “efficiently
computable” with computable in polynomial time
(i.e. time bounded by a polynomial function of the
encoded length of the inputs and outputs.

* This has sometimes been called Cook’s Thesis. This
hypothesis is not literally believed (why?) but it is an
abstraction that has led to great progress in
computing.

* Informal claim: Any function (poly time) computable
is (poly time) computable by a Turing machine. For
the time being we will not introduce a precise
computational model.



Now for some formalities

 We are always assuming that inputs are encoded as strings
over some finite alphabet S with at least 2 symbols. (We can
use as many symbols as we want but 2 suffices for our
purpose. Note: finitely many symbols on a keyboard.)

* We can encode a set of inputsw_1, ...w_n by having a
special symbol (say #) to separate the inputs but again this
can all be encoded back into 2 symbols.

* We say that a function f:S* into S* is computable in time T()
if there is an algorithm (to be precise a Turing machine or an
idealized RAM with an appropriate instruction set) such
that for all inputs w, the algorithm halts using at most T(n)
steps wheren = [w/ + [f(w)]. We will never be dealing with
functions where [f(w)] >> [w] so n will then just be the
length of the input.



Some definitions and notation
(mainly on the board)

A polynomial time reduction (called a polynomial
time Turing reduction)

A polynomial time transformation - special case of a

poly time reduction (called a “many to one poly time
reduction)

Simple observation we already made : If problem X
poly time reduces to problem Y, thenifY is
computable in poly time then so is X. The
contrapositive is that if X is not poly time
computable then Y is not poly time computable.

Note: poly time reduction and transformation are
transitive relations.



Some relatively easy transformations

Vertex cover transforms to independent set and
conversely, independent set transforms to vertex
cover.

Note: these are NP complete problems and all
such problems can theoretically be reduced to

each other. But here the reduction in both
directions is immediate.

SAT to 3-SAT (Clearly here the converse holds.)
3-SAT to Clique



