CSC 3/3 Lecture 15

Review: Transforming max (size) bipartite
matching to max flow. A comment on the max

residual capacity FF algorithm.

Proof of the correctness of this transformation
and why it does not work for weighted bipartite
matching.

Another immediate application of max flow-
maximizing the number of edge (and node)
disjoint paths.

Image segmentation; binary and metric labeling



Many ways to insure polynomial time

* As claimed, one can have bad ways to choose
augmenting paths such that with non rational
capacities, the FF algorithm will not terminate.

 The max flow min cut theorem along with the
observation that each augmenting path has
residual capacity at least one insures that with
integral capacities FF must always terminate.
However, as the example in the notes shows
there are bad ways to choose augmenting oaths
so that FF does not terminate in polynomial time.



Some ways to achieve poly time

* Choose an augmenting path having shortest distance;
this is the Edmonds Karp method and can be found in
CLRS (page 661); it has running time O(n m*2); n = |
V[, m=[E]

 There is a “weakly polynomial time” algorithm in
Kleinberg and Tardos; here the number of arithmetic
operations depends on the length of the (integral)
capacities. NOTE: article claims that this method does
not always terminate.

e Dinitz’ method which has running time O(m n”2). It
is also a shortest augmenting path method based on
the concept of a blocking flow .




Maximum bipartite matching

* Recall that we do not know an efficient DP or any
greedy optimal algorithm for computing a max
bipartite matching.

 We transform the bipartite matching problem for
graph G = (V,E) into a flow problem:

Let G'=(V',E’) where V' =V + {s,t}; and
E'=E +{(s,x)]| xinX +{(y,t)] yinY}
We make this into a flow network F_G by

making s and t the source and terminal nodes and
setting c(e)=1foralleinE".



Transformation preserves solutions

e Every matching M in G gives rise to an integral flow f Min F_G
with val(f M) = [M| and conversely every integral flow fin F G
gives rise to a matching M_fin G with |M]| = val(f).

* Proof: (if) M = {<x(i1),y(j1)>,...<x(ir),y(jr)>} is a matching of size
r, then for 1<=k<=r, each path  s->x(ik)->y(jk)->t has flow 1.
Since these paths are edge disjoint the total flow is r.

* Conversely, suppose fis an integral flow of value r. Consider an
edge <s,x(ik)> in this flow. Since for every edge f(e) is integral
and the capacity c(e) is 1, the flow into x(ik) is 1 and hence (by
flow conservation) the flow out must be 1 and by integrality
this flow must then leave on some edge <x(ik),y(jk)>. Now
there must be r such x(ik) and the claim is that these edges
<x(ik),y(jk)> must be a matching. Suppose there are two nodes
x(ik) and x’(ik) connected to some y(jk). That would give a flow
of 2 into y(jk) but since the capacity out of y(jk) is 1, this would
violate conservation.



Good question asked after last class

 Why can’t this be modified for weighted bipartite
matching? The obvious modification would set
the capacity of <x,y>in E to be its weight w(x,y)
and the capacity of any edge <e,x> could be set to
the max {w(x,y(j))} and similarly for the weight of
edges <y, t>. Why doesn’t this work? It is true that
if G has a matching of total weight W then the
resulting flow network has a flow of value W.

* But the converse fails! Why?



Polynomial transformation

* When we get to our next big topic (NP
completeness), we will be focusing on decision
problems and as a decision problem we have
[M] >=k iff val(f_M) >= k.

* Note that we are transforming an input (G, k) to
some (F_G,k) = phi(G,K) where phi is a function
that is easily computed; i.e. certainly in time
polynomial in the encoding length of the input
(G,k). Then we have (G, k) is “good” for the
matching decision problem iff phi(G,k) is good
for the flow problem.



A similar transformation

 The problem now is defined by a directed graph
G = (V,E) with distinguished nodes s,t. The
objective is to maximize the number of edge
disjoint directed paths from s to t. We basically
do the same transformation, setting the capacity
of all edges in E to be 1. Once again because of
integrality we can argue that G has k disjoint

paths iff only the transformed input F G has
(integral) flow k.

 We can adapt this transformation to work for
node disjoint paths and we can also have the
same result for undirected graphs.



The labeling problem

In section 12.6, the text defines the labeling
problem and then provides a local search
approximation algorithm (with approximation
ratio ~ 2). For context | will state the problem
formulation as in section 12.6 and then discuss
the special case of 2 labels that is the subject of

section 7.10.




The labeling problem

 The inputis a graph G = (V,E), a set of labels
L={a 1,..a r} and two cost functions
p : E :->non negative reals and
c:VxL:->non negative reals

e c_i(a) isthe cost of giving the label 'a’ to node i
(e.g. a document)

* p _ijis the cost of not giving nodes i and j the
same label. (More generally, there is a metric d
on the labels L and the cost depends on how far
apart are the labels given to nodes i and j. The
text only considers the {0,1} metric.)



Restricting to two labels

* When there are more than 2 labels, the problem
becomes NP-hard. And section 12.6 provides an
approximation algorithm for this problem. But when
there are only 2 labels, the problem can be solved by

calculating an appropriate min cut (and hence by
max flow).

* For two labels, the problem is restated as minimizing
q’(AB) =
sum {iinA}b i +sum {jinB}a j+
sum_{(i,j):A contains exactly one of the nodes i,j} p_ij



The transformation

 The intuitive idea is that we are trying to partition
the nodes into those that will be labeled as
belonging to A and those that belong to B. This is the
idea of a cut in the graph and the edge costs p_ij
across that cut will reflect the costs of giving i and j
different labels. But how to reflect the costs the
labels given to nodes i and j? We will do this by
introducing a source s and terminal t and connecting
s to every nodejin V with cost a j and connecting
every node jin V with cost b_i and then after any
assignment we have a flow network as in KT Fig 7-19



