CSC 373 Lecture 14

Review: The max flow-min cut theorem

A simple consequence of the FF max flow
algorithm: if all capacities are integral (or
rational) then any FF implementation will
terminate with an optimal integral max flow

Ways to choose an augmenting path so as to
insure polynomial time termination

Immediate applications of max flow

The Ford Fulkerson scheme

* The format if the Ford Fulkerson scheme is:
f=0,G(f)=G %initialize
While there is an augmenting path in G(f)
Choose an augmenting path pi
f:=f+f pi; f:=f" % Note this also changes G(f)
End While

| call this a “scheme” rather than a well specified
algorithm since we have not said how one
chooses an augmenting path (as there can be
many such paths)

The Theorem

* The following are equivalent:

1) fis a max flow
2) There are no augmenting paths wrt flow f;
that is, no s-t path in G(f)
3) val(f) = ¢(S,T) for some cut (S5,T) ; hence this
cut (S,T) must be a min (capacity) cut since
val(f) <= ¢(S,T) for all cuts.

 Hence the name max flow (=) min cut

The proof

e 1) =>2) If there is an augmenting path (wrt f
then f can be increased and hence not optimal

e 2)=>3) Consider all the nodes S reachable from
s in the residual graph G(f). Note that t cannot be
in S and hence (5,T) = (S,V-S) is a cut and ¢(S,T) =
val(f) since f(u,v) = c(u,v) for all edges (u,v) with u
NS, vinT

e 3)=>1) Let f’ be an arbitrary flow. We know
val(f’) <=c(S,T) for any cut (S5, T) and hence val(f’)
<= val(f) for the cut constructed in 2).

Many ways to insure polynomial time

* As claimed, one can have bad ways to choose
augmenting paths such that with non rational
capacities, the FF algorithm will not terminate.

 The max flow min cut theorem along with the
observation that each augmenting path has residual
capacity at least one insures that with integral
capacities FF must always terminate and the number of
iterations is at most C, the sum of edge capacities
leaving s. . However, as the example in the notes
shows there are bad ways to choose augmenting paths
so that FF does not terminate in polynomial time.

Bad example for naive FF

1000 1000

1000 % 1000

Some ways to achieve poly time

 Choose an augmenting path having shortest distance; this
is the Edmonds Karp method and can be found in CLRS
(page 661); it has running time O(n m”2); n=|V/[, m = |E]

* There is a “weakly polynomial time” algorithm in Kleinberg
and Tardos; here the number of arithmetic operations
depends on the length of the (integral) capacities. It follows
that always choosing the largest capacity augmenting path
is (at least weakly) polynomial time.

 The method | like to present (although not as fast as the
push pull method in the text) is Dinitz” method which has
running time O(m n”2). It is also a shortest augmenting
path method based on the concept of a blocking flow and
has some additional advantages beyond the somewhat
better running time of Edmonds-Karp.

Dintiz’ algorithm

e [f=(V',E')where V'={v/[vreachable fromsin G f}and (u,v)in E’
iff level(v) =level(u) + 1. Here level(u) = length of shortest path
fromstou. L fisthe “levelled graph” wrt G _f.

A blocking flow f’is a flow (in a flow network) such that everysto t
pathin L _f has a saturated edge.

. Dinitz's algorithm:
Initialize f(e) = O for all e.
While t is reachable from s in G_f (else no augmenting path)
Construct L f correspondingto G _f
Find a blocking flow fwrt L f andsetf:=f+f’
End While.

Proof sketch

* The algorithm halts in at most n-2 iterations. The
proof of this claim rests on the fact that for every
node in L _f, level’(v) >= level(v) since every edge
in L _f’is either an edge in G_f or the reverse of

an edge in L_f; and level’(t) > level(t) since f” was
a blocking flow.

* A blocking flow can be found in time O(mn); the

levelled graph can be computed in O(m) and
using depth first search we can compute a
blocking path in time O(mn).

Maximum bipartite matching

* Recall that we do not know an efficient DP or any
greedy optimal algorithm for computing a max
bipartite matching.

 We transform the bipartite matching problem for
graph G = (V,E) into a flow problem:

Let G'=(V,E') where V' =V + {s,t}; and

E'=E +{(s,x)| x\inX +{(yt)] yinY}

We make this into a flow network F_G by

making s and t the source and terminal nodes and
setting c(e)=1foralleinE".

Transformation preserves solutions

* Every matching M in G gives rise to an integral
flowf Min F G withval(f M)=[M|/ and
conversely every integral flow fin F_G gives rise
to a matching M_fin G with [M/ = val(f).

* |t follows that the run time is O(mn); Dinitz’
algorithm can be used to obtain O(m sgrt(n)).

* When we get to our next big topic (NP
completeness), we will be focusing on decision

problems and as a decision problem we have [M/
>=k iff val(f_M) >= k.

