CSC3/3 Lecture 13

* Ford Fulkerson and augmenting paths
* Ford Fulkerson as a local search algorithm

e Cuts and the max flow-min cut theorem



Flow networks

* | will be following our old CSC364 lecture notes for
the basic definitions and results concerning the

computation of max flows. In doing so we fol

OWS

the convention of allowing negative flows. W

nile

intuitively this may not seem so natural, it does

simplify the development.

* A flow network (more suggestive to say a cap
network) is as follows: F = (G,s,t,c) where G =
is a “bidirectional graph”, s (the source) and t

acity
(V,E)
(the

terminal) are nodes in V, and c is a non negative

real valued function on the edges.



What is a flow?

* Aflow fis a real valued function on the edges
satisfying the following properties:
1) f(e) <= c(e) for all edges
(capacity constraint)
2) f(u,v) =- f(v,u) (skew symmetry)
3) for all nodes u (except for s and t), the sum
of flows into (or out of) u is zero. (Flow
conservation). Note: this is the “flow in = flow
out” constraint for the convention of only
having non negative flows.



The max flow problem

* The goal of the max flow problem is to find a valid
flow that maximizes the flow out of the source node s.
As we will see this is also equivalent to maximizing the
flow in to the terminal node t. (This should not be
surprising as flow conservation dictates that no flow is
being stored in the other nodes.) We let val(f) = [f/]
denote the flow out of the source s for a given flow f.

* We will study the Ford Fulkerson augmenting path
scheme for computing an optimal flow. | am calling it
a “scheme” as there are many ways to instantiate this
scheme although | don’t view it as a general
“paradigm” in the way | view (say) greedy and DP
algorithms.



A flow f and its residual graph

e Given any flow f for a flow network F = (G,s,t,c), we can
define the residual graph G(f) = (V.E(f)) where E(f) is
the set if all edges e having positive residual capacity ;
i.e. residual capacity of ewrt f=c f(e)=c(e)-f(e) > 0.

* Note that c(e)-f(e) >= 0 for all edges by the capacity
constraint. Also note that with our convention of
negative flows, even a zero capacity edge (in G) can
have residual capacity.

* The basic concept underlying Ford Fulkerson is that of
an augmenting path which is an s-t path in G(f). Such a
path can be used to augment the current flow f to
derive a better flow f.



The residual capacity of an
augmenting path

* Given an augmenting path pi in G(f), we can
define its residual capacity as ¢ _f (pi) (wrt f) to
be the min{c f(e) | ein the path pi}.

* Note that the residual capacity of an
augmenting path is itself >0 since every edge
in the path has positive residual capacity. How
would you compute an augmenting path of
maximum residual capacity?



Using the flow on an augmenting path
(wrt a flow f) to improve the flow

* We can think of an augmenting path as
defining a flow f pi (in the “residual network):

f pifu,v) = c f(pi)if (uv)is on pi
f_pi(u,v) =-c_f(pi)if (vu)inon pi
f pifu,v) = 0 otherwise

e Claim:f'=f+f piisaflowin F and
val(f’) > val(f)



The Ford Fulkerson scheme

* The format if the Ford Fulkerson scheme is:
f=0,G(f)=G %initialize
While there is an augmenting path in G(f)
Choose an augmenting path pi
f:=f+f pi; f:=f" % Note this also changes G(f)
End While

| call this a “scheme” rather than a well specified
algorithm since we have not said how one
chooses an augmenting path (as there can be
many such paths)
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Ford Fulkerson as a local search

* Local search is one of the most popular
approaches for solving search and
optimization problems. Local search is often
considerd to be a “heuristic” since local search
algorithms are often not analyzed but seem to
often produce good results. For both search
(i.e finding any feasible solution) and
optimization, local search algorithms define
some local neighbourhood of a (partial)
solution S, which we will denote as Nbhd(S)



The local search meta-algorithm

Initialize S

While there is a “better solution” S” in Nbhd(S)
§:=85

End While

Here “better” can mean different things. For a search problem, it
can mean “closer” to being feasible (in some sense); for an
optimization problem it usually means being an improved solution.

There are many variations of local search and we will study local
search later but for now we just wish to observe the sense in which
Ford Fulkerson can be seen as a local search algorithm. Namely, we
are using a trivial initial solution and defining the local
neighbourhood of a flow f to be all flows f” defined by adding the
flow of an augmenting path f pitof.



Many issues concerning local search

How do we define the local neighbourhood and
how do we choose an S” in Nbhd(S)?

Can we guarantee that a local search algorithm
will terminate? And if so, how fast will the
algorithm terminate?

Upon termination how good is the local optimum
that results from a local search optimization?

How can we escape from a local optimum
(assuming it is not optimal)?



The local search issues for Ford the
Fulkerson scheme

* Does it matter how we choose an augmenting
path for termination and speed of
termination; that is, does it matter how we
are choosing the S”in Nbhd(S)?

Answer: yes it matters and there are good
ways to choose augmenting paths so that the
algorithm is poly time.

 Upon termination how good is the flow?
Answer:The flow is an optimal flow



The Max flow-Min cut Theorem

 We will accept some basic facts and look at the proof
of the max flow-min cut theorem as presented in our
old CSC 364 notes. Amongst the consequences of this
theorem, we obtain the result that if any
implementation of the Ford Fulkerson scheme
terminates, then the resulting flow is an optimal flow.

e A cut (really an s-t cut) in a flow network is a partition
(S,T) of the nodes such thatsin S, and tin T. We define
the capacity ¢(S,T) of (resp.the flow f(S,T) across) a cut
as the sum of all capacities (resp. the sum of all flows)
for edges (u,v) withuinSandvinT




Max flow-min cut continued

One basic fact that intuitively should be clear is
that f(S,T) <= ¢(S,T) for all cuts (S,T) (by the
capacity constraint for each edge). And it should
also be intuitively clear that f(S,T) = val(f) for any
cut (S,T) (by flow conservation at each node).

Hence for any flow f, val(f) <= c(S,T) for every
cut.



The Theorem

* The following are equivalent:

1) fis a max flow
2) There are no augmenting paths wrt flow f;
that is, no s-t path in G(f)
3) val(f) = ¢(S,T) for some cut (S5,T) ; hence this
cut (S,T) must be a min (capacity) cut since
val(f) <= ¢(S,T) for all cuts.

 Hence the name max flow (=) min cut



The proof

e 1) =>2) If there is an augmenting path (wrt f
then f can be increased and hence not optimal

e 2)=>3) Consider all the nodes S reachable from
s in the residual graph G(f). Note that t cannot be
in S and hence (5,T) = (S,V-S) is a cut and ¢(S,T) =
val(f) since f(u,v) = c(u,v) for all edges (u,v) with u
NS, vinT

e 3)=>1) Let f’ be an arbitrary flow. We know
val(f’) <=c(S,T) for any cut (S5, T) and hence val(f’)
<= val(f) for the cut constructed in 2).



