CSC 3/3 Lecture 12

* One last DP algorithm: Sequence alignment/
edit distance

* The difference between sequence alignment
and bipartite matching

e Start Flow networks



Sequence alignment/Edit distance

* |In the edit distance problem we are given two
strings X = x(1)x(2)....x(m) and Y = y(1)...y(n) over
some finite alphabet S. We are trying to find the
best way to “match” these two strings. Variants of
this problem occur often in bio-informatics.

* Sometimes this is cast as a maximization
problem; we will view it as a minimization
problem by defining different distance measures
and matching symbols so as to minimize this

distance.




A simple distance measure

* Suppose we can delete symbols and match
symbols. We can have a cost d(a) to delete a
symbol ain S, and a cost m(a,b) to match
symbol a with symbol b (where we would
normally assume m(a,a) = 0).

* Asin any DP we consider an optimal solution
and let consider whether or not we will match
the rightmost symbols of X and Y or delete a
symbol.




The DP arrays

For the semantic array we have E[i,j] is the cost of an optimal
match of x(1)...x(i) and  y(1)...y(j).

E’[0,0] =0 ;

E°[0,j] = E’[0,j-1] + d(y(j)) for j > O;

E’[i,0] = E’[i-1,0] + d(x(i)) for i >0;

E’[l,j] = min{A,B,C} where A = E’[i-1,j-1] + m(x(i),y(j)),

B = E’[i-1,j] + d(x(i)), and C = E’[i,j-1] + d(y(j)).

As a simple variation of edit distance we consider the
maximization problem where each “match” of
“compatible” a and b) has profit 1 (resp. v(a,b)) and
all deletions and mismatches have 0 profit. This is a
special case of unweighted (resp. weighted) bipartite
graph matching where edges cannot cross.




Flow networks

* | will be following our old CSC364 lecture notes for
the basic definitions and results concerning the

computation of max flows. In doing so we fol

OWS

the convention of allowing negative flows. W

nile

intuitively this may not seem so natural, it does

simply the development.

* A flow network (more suggestive to say a cap
network) is as follows: F = (G,s,t,c) where G =

acity
(V,E)

is a “bidirectional graph”, s (the source) and t (the
terminal) are nodes in V, and c is a non negative

real valued function on the edges.



A valid flow

 Aflow fis areal valued function on the edges
satisfying the following properties:
1) f(e) <= c(e) for all edges
(capacity constraint)
2) f(u,v) =- f(v,u) (skew symmetry)
3) for all nodes u (except for s and t), the sum
of flows into (or out of) u is zero. (Flow
conservation). Note: this is the “flow in = flow
out” constraint for the convention of only
having non negative flows.



The max flow problem

* The goal of the max flow problem is to find a valid
flow that maximizes the flow out of the source node s.
As we will see this is also equivalent to maximizing the
flow in to the terminal node t. (This should not be
surprising as flow conservation dictates that no flow is
being stored in the other nodes.) We let val(f) = [f/]
denote the flow out of the source s for a given flow f.

* We will study the Ford Fulkerson augmenting path
scheme for computing an optimal flow. | am calling it
a “scheme” as there are many ways to instantiate this
scheme although | don’t view it as a general
“paradigm” in the way | view (say) greedy and DP
algorithms.



So why study Ford Fulkerson?

* The question is why study the Ford Fulkerson scheme if it is
not a very generic algorithmic approach?

* |view Ford Fulkerson and augmenting paths as an important
example of a local search algorithm although unlike most
local search algorithms we obtain an optimal solution.

* The topic of max flow (and various generalizations) is
important because of its immediate application and because
of the many applications of max flow type problems to
other problems (e.g. max bipartite matching). That is, in the
terminology that we will soon be using, many problems can
be polynomial time transformed/reduced to max flow (or
one of its generalizations). One might refer to all these
applications as “flow based methods”.



A flow f and its residual graph

e Given any flow f for a flow network F = (G,s,t,c), we can
define the residual graph G(f) = (V.E(f)) where E(f) is
the set if all edges having positive residual capacity ;
thatis, c(e)-f(e) > 0. Note that c(e)-f(e) >= O for all
edges by the capacity constraint. Note that with our
convention of negative flows, even a zero capacity
edge (in G) can have residual capacity.

* The basic concept underlying Ford Fulkerson is that of
an augmenting path which is an s-t path in G(f). Such a
path can be used to augment the current flow f to
derive a better flow f.



