CSC373: Lecture 11

Comments on term test 17

The all pairs least cost problem and
alternative DPs

The matrix chain problem



The all pairs least cost problem

 We now wish to compute the least cost path for
all pairs <u,v>in an edge weighted directed graph
(with no negative cycles).

 We can repeat the single source DP for each
possible source node: complexity O(n"4)

 We can reduce the complexity to O(n”3 log n)
using the DP based on the semantic array E[j,u,v]
= cost of shortest path of path length at most 24
from u tov. What is corresponding
computational array?



Another DP for all pairs

Let us assume WLG that V={1,2,...,n}.

We now define the semantic array G/k,u,v] to be the
least cost of a (simple) path pi from u to v such that the
internal nodes in the path pi are in the subset {1,2,...,k}.

The computational array is G’[O,u,v] =0 if u =vand =
c(u,v) if <u,v>is an edge; infinite otherwise. G’[k+1,u,v] =
min{A,B} where A = G’[k,u,v] and

B =G’[kuk+1] + G'[k k+1,v]

Like the recursion for the previous array E’[j,u,v], the
recursion here uses two recursive calls for each entry.

Complexity: n23 entries and only O(1) per entry.



Two similar DPs (using 2 recursive
calls); DP over intervals

* The matrix chain problem : We are given n
matrices (say over some field) M(1),...,M(n) with
M(i) having dimension d(i-1) x d(i). The goal is to
compute the matrix product M(1)*M(2)* ...*M(n)
using a given subroutine for computing a single
matrix product A*B.

* We recall that matrix multiplication is associative;
thatis, (A*B)*C = A*(B*C) but the number of
operations for computing A*B*C generally
depends on the order in which the pairwise
multiplications are carried out.



Matrix chain product continued

* Let us assume that we are using classical matrix
multiplication and say that the scalar complexity for
a (p x g) times (g x r) matrix multilication is par.

* For example say the dimensions of A,B,C are
(respectively) 5x10, 10x100, 100x50. Then using
(A*B)*C costs 5000 + 25000 = 30000 scalar ops
whereas A*(B*C) costs 50000 + 2500 = 52500 scalar
ops.

 NOTE: For this problem the input is these dimensions
and not the actual matrix entries.



Parse tree for the product chain

* The matrix product problem then is to
determine the parse tree that describes the
order of pairwise products. At the leaves of
this parse tree are the individual matrices and
each internal node represents a pairwise
matrix multiplication.

* Once we think of this parse tree, the DP is
reasonably suggestive. That is, the root of the
optimal tree is the last pairwise multiplication
and the subtrees are subproblems that must
must be computed optimally.



The DP arrays

 The semantic array we are led to is C[i,j] is the cost
of an optimal parse of M(i) *...* M(j) for
I1<=i<=j<=n

* The recursive computationally array is as follows:
C’[i,i] = 0 for all i and for i<, C’lij] =
min{ C[i,k] + C’[k+1,j] + d(i-1)d(k)d(j): i <=k <j}

* This same style DP algorithm (called DP over
intervals) is also used in the RNA folding problem in
the text as well as in computing optimal binary
search trees. Essentially in all these cases we are
computing an optimal parse tree.



Sequence alignment/Edit distance

* |In the edit distance problem we are given two
strings X = x(1)x(2)....x(m) and Y = y(1)...y(n) over
some finite alphabet S. We are trying to find the
best way to “match” these two strings. Variants of
this problem occur often in bio-informatics.

* Sometimes this is cast as a maximization
problem; we will view it as a minimization
problem by defining different distance measures
and matching symbols so as to minimize this

distance.




A simple distance measure

* Suppose we can delete symbols and match
symbols. We can have a cost d(a) to delete a
symbol ain S, and a cost m(a,b) to match
symbol a with symbol b (where we would
normally assume m(a,a) = 0).

* Asin any DP we consider an optimal solution
and let consider whether or not we will match
the rightmost symbols of X and Y or delete a
symbol.




The DP arrays

For the semantic array we have E[i,j] is the cost of an optimal
match of x(1)..x(i) and  y(1)...y(j).

E’[0,0] =0 ;

E’[0,j] =d(y(j)) forj>0; E’[i,0] =d(x(i)) for i >0;

E’[lj] = min{A,B,C} where A =m(x(i),y(j)),

B =d(x(i)), and C = d(y(j)).

As a simple variation of edit distance we consider the
maximization problem where each “match” of
“compatible” a and b) has profit 1 (resp. v(a,b)) and
all deletions and mismatches have 0 profit. This is a
special case of unweighted (resp. weighted) bipartite
graph matching where edges cannot cross.




DP-concluding remarks

* |In DP algorithms one usually has to first generalize
the problem (as we did to more or less some extent
for all problems considered). Sometimes this
generalization is not at all obvious.

 What is the difference between divide and conquer
and DP? In divide and conquer the recursion tree
never encounters a subproblem more than once. In
DP, we need memoization (or an iterative
implementation) as a given subproblem can be
encountered many times leading to exponential time
complexity if done without memoization.



