CSC373: Lecture 10

Discuss problem set

Reflections on DP for least cost paths
problem

The all pairs least cost problem and
alternative DP



A DP with a somewhat different style

* Lets consider the single source least cost paths
problem which is efficiently solved by
Dijkstra’s greedy algorithm for graphs in which
all edge costs are non-negative.

* The least cost paths problem is still well
defined as long as there are no negative
cycles; that is, the least cost path is a simple
path.



Single source least cost paths for
graphs with no negative cycles

Following the DP paradigm , we consider the nature of an
optimal solution and how it is composed of optimal
solutions to subproblems'.

Consider an optimal simple path P from source s to some
node v. This path could be just an edge but if the path P
has length greater than 1, then there is some node u which
immediately proceeds vin P. If P is an optimal path to v,
then the path leading to u must also be an optimal path.

We are led to define the following semantic array:

C[i,v] = the minimum cost of a simple path with path length
at most i from source s to v. (If there is no such path then
this cost is infinte.)

The desired answer is then the single dimensional array
derived by setting i = n-1 wheren = | V/.



Corresponding computational array

C’[0,v] =0 if v = s and infinite otherwise.

C’[i,v] = min {A,B} where A = C’[i-1,v] and

B = min {C’(i-1, u) + c(u,v) | (u,v)in E}.

Note: This presentation is slightly different than in the
KT text.

Why is this a slightly different form than before?
Showing the equivalence between the semantic and
computational arrays is not an induction on the
number of input items in the solution but is based on
some other parameter (i.e. the path length).

Complexity: n*2 entries and O(n) time/entry = O(n”3)



Can we compute the most cost path

using the same DP?

* To define this problem properly we want to say “most
cost simple path” since cycles will add to the cost of a
path. For least cost we did not have to specify that the
path is simple.

* Now suppose we just replace min by max in the least
cost DP. Namely, M[i,v] = max cost simple path from s
to v.

* The corresponding computational array is
M’[O,v] = O (or —infinity)

M’[i,v] = max {A,B} where A = M’[i-1,v] and
B = max {M’(i-1, u) + c(u,v) | u: (u,v) in E}. Correct??



What goes wrong?

* The problem calls for a maximum simple path
but the recursion

B =max {M’(i-1, u) + c(u,v) | u: (u,v)}inE
does not guarantee that the path through u
will be a simple path as v might occur in the
path to u.
Why isn’t this a problem for least cost paths?



