CSC373: Lecture 1

Introduction and Motivation for "new CSC 373":
Design and Analysis of Algorithms
(with a brief introduction to complexity theory)

WHY CSC 373 remains a required course



The Computational Lens

The world is undergoing a phase change, impelled by constant
improvements in communication and computation. Think of the
effect of cell phones on the politics of the Middle East, or the
power of search engines on instant information accessibility, or the
effect of DNA analysis on medicine. This phase change would not
have been possible without advances in theoretical computer
science (TCS).

We are now at the dawn of an exciting era for TCS. Its core
guestions have gained prominence in both the intellectual and
popular arenas. Recent years have witnessed breakthroughs in
faster algorithms and scalable parallelizable data structures,
complexity lower bounds, cryptography, approximate
combinatorial optimization, pseudo-randomness, coding theory, ...
The field of TCS has expanded its frontiers. Its intellectual tools
have turned to far broader applications than had once been
envisioned. The mathematical and experimental sciences rely
increasingly on the algorithms and abstractions of TCS, creating
new areas of inquiry within theory and new fields at the boundaries
between TCS and the sciences. Computational biology and
algorithmic game theory are two such examples.



Administration

Lectures M,W,F 10-11; tutorials R 2-3 in rooms
SS 2106, BA 3012, BA 3116

Grading scheme: 3 assighments at 5% each
(no late assignments), 3 term tests at 15%
each, one final at 40%

Office hours T 1:30-2:30 and W 11:30-12:30
and by appointment (dropping in also
welcome); SF 2303B, bor@cs.toronto.edu

Text: Kleinberg and Tardos: ignore at your
peril




The dividing line between efficient and
NP hardnesss

* Many closely related problems are such that one
problem has an efficient algorithm while a variant
becomes (according to well accepted
conjectures) difficult to compute (e.g. requiring
exponential time complexity). For example:

* |Interval Scheduling vs Job Interval Scheduling
 MST vs Bounded degree MST

* MST vs Steiner tree

e Shortest paths vs Longest (simple) paths

e 2 Colourability vs 3-Colourability



Tentative set of topics (very
approximate)

Motivation: Easy vs Hard Problems

Greedy algorithms (5 L)

Dynamic Programming (5L)

Network flows; matching (4L)

NP and NP completeness; self reduction (7L)
Linear Programming; IP/LP rounding (5L)
Local search (3L)

Randomization (4L)



Begin Greedy Algorithms

Interval Scheduling

sing.

i at s; and finishes at f;.

mpatible if they don't overiap.

aximum subset of mutually compatible jobs.

> Ti

Interval Scheduling: Greedy Alg

Greedy template. Consider jobs in some natural o
Take each job provided it's compatible with the o

[Earliest start time] Consider jobs in ascendir

[Earliest finish time] Consider jobs in ascendil

[Shortest interval] Consider jobs in ascending

[Fewest conflicts] For each job j, count the m
conflicting jobs c;,. Schedule in ascending orde!



Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken

courdererzezie for earhext start time

courteresample for shortest imtervo

courteresample for feaest cordlicts



