Name		Student No		
Tutorial:	MP202	UC144	UC52	
AIDS ALLOWED: One page (two sides) of handwritten notes				
Answer	ALL questions on te	st paper. Use backs of	sheets for additional space.	

REMINDER: You get 20% of any question or subquestion if you state "I do not know how to answer this question". You get 10% of any question which you just leave blank.

Total Marks: 50

- 1. This problem concerns Kruskals greedy algorithm for the MST problem. Let G = (V, E) be a connected graph and $c: E \to \Re$ a cost function on the edges.
 - (a) Suppose $E' \subset E$ is an acyclic set of edges; that is, the graph (V, E') is acyclic. Indicate how Kruskal's greedy algorithm can be modified so as to compute a minimum spanning tree containing E'. How would you define a "promising partial solution"? [10 points]

(b) Suppose that the edges have been sorted and that $c(e_1) = c(e_2) < e_3 \ldots < e_m$. That is, the two least costly edges have the same cost and all other edges have distinct costs. Use the analysis of Kruskals algorithm to show that there is a unique minimum spanning tree. [10 points]

(c) Now suppose that the edges have been sorted and that $c(e_1) = c(e_2) = c(e_3) < e_4 \dots < e_m$. That is, the three least costly edges have the same cost and all other edges have distinct costs. Provide a graph G = (V, E) with the edge costs as stated so that there are at least two different minimum spanning trees.

[5 points]

2. Consider the following variant of the knapsack problem. The input is a set of N items with weights w_1, \ldots, w_N , gains g_1, \ldots, g_n and volumes v_1, \ldots, v_N ; a weight bound C, and a volume bound D. A subset $S \subseteq \{1, \ldots, N\}$ is feasible if $\sum_{i \in S} w_i \leq C$ and $\sum_{i \in S} v_i \leq D$. The goal is to find a feasible subset S having maximum gain $g(S) = \sum_{i \in S} g_i$. Assume all input parameters are positive integers.

Outline a dynamic programming solution with complexity O(NCD) for this problem. More specifically

(a) Define an appropriate semantic array A and show how to compute the optimal value from A. [10 points]

(b) Give an equivalent recursively defined computational array \tilde{A} . (Don't forget the base case.) [10 points]

(c) Intuitively justify why $A=\tilde{A}$ and briefly say how you would prove this equality. [5 points]