CSC 364S Notes University of Toronto, Spring, 2003

Flow Algorithms

The networks we will consider are directed graphs, where each edge has associated with it
a nonnegative capacity. The intuition is that if edge (u,v) has capacity ¢, then this means
that at most ¢ amount of “stuff” (for example water, or electricity, or bits) can flow along
the edge from u to v. We will also have two distinguished vertices s and ¢ (for source and
terminus), and the goal is to compute the maximum amount of “stuff” that can be made to
flow through the network from s to t. Of course, we also have to obey the “flow conservation”
constraint that for every vertex v other than s or ¢, the total amount of stuff flowing into v
is equal to the total amount flowing out of v. Actually, instead of having the two notions of
stuff flowing into a vertex and of stuff flowing out of a vertex, we will allow negative flows
along an edge; if there is a flow of z on the edge (u,v), then there will be a flow of —x on
the edge (v, u). The flow conservation constraint then becomes the statement that the total
amount flowing out of vertex v (other than s or t) is exactly 0; this is equivalent to saying
that the total amount flowing into v is exactly 0. We now state all this formally.

A Flow network F = (G, ¢, s,t) consists of:
e a directed graph G = (V, E); actually, G is bidirected, that is, if (u,v) € E then
(v,u) € E; we also assume there are no self loops;
e a nonnegative capacity function ¢ : £ — R2%
e two distinguished vertices: s (the source) and ¢ (the terminus or target).
Note: The terminology “flow network” is pretty standard, but in fact it should be called a

“capacity network” (or perhaps to be more grammatical, a “capacitated network”) to stress
the fact that we start with capacities and not flows.

We can assume (without loss of generality) that for every v € V| there is a path s to ¢, and
we can also assume that for all (u,v) € F, either ¢(u,v) > 0 or ¢(v,u) > 0 (or both).

We now define the notion of a flow in . Note that unlike capacities, flow values are allowed
to be negative. For a vertex u, we use the notation N(u) to denote the neighbors of wu:

N(u) ={veV]|(u,v) € E}.

A flowin (G is a function f: F — R satisfying:

e capacity constraint: f(u,v) < c(u,v) for every (u,v) € £
e skew symmetry: f(u,v) = —f(v,u) for every (u,v) € F

e flow conservation: For all v € V' other than s or ¢, Z flu,v) =0
vEN (u)

The value of a flow fis |f| = Z f(s,v).

vEN(s)
Note that although we defined |f| to be the amount flowing out of s, we will see later that
this is equal to the amount flowing into ¢.

Maximum flow problem:
Given a flow network (G, ¢, s,1), find a flow of maximum possible value from s to ¢.

Example: The following is an example of a flow network. Only edges with positive capacities
are shown; edges with capacity 0 are omitted from the diagram. Each edge is labelled with
its capacity. For each edge (u,v) that is shown, the edge (v, u) is also assumed to be present;
if the edge (v, u) is not shown, then it has capacity 0.

FLOW NETWORK F:

Uy 14 U3
[] []
20 22
S 10 4 8 7 [] t
13 4
[] []
15
Vo V4

The following shows the above example of a flow network, together with a flow.
The notation z/y on an edge (u,v) means

z is the flow (z = f(u,v))
y is the capacity (y = ¢(u,v))

Only flows on edges of positive capacity are shown. Note that negative flows on edges of 0
capacity are not shown. For example, f(vy,s) = —8, but this is not explicitly shown on the
diagram. In this example we have:

Ifl =13 48 =21.

FLOW NETWORK F WITH A FLOW f:

U1 14/14 U3

418
s ~1/10 | | 1/4 I .
[]

vy 11/15 v4

Residual Networks

Let F be a flow network, f a flow. For any (u,v) € F, the residual capacity of (u,v) induced

by f is
cr(u,v) = e(u,v) — f(u,v) > 0.

The residual graph of GG induced by f is
Gf = (Va Ef)
where
FEy=A{(u,v) € E|cs(u,v) > 0}.
The flow f also gives rise to the residual flow network Fr = (G, ¢y, s,1).

The residual network F; is itself a flow network with capacities ¢y, and any flow
in F; is also a flow in F.

The next lemma shows that if we have a flow f in a network and a flow f; in the residual
network, then fy can be added to f to obtain an improved flow in the original network.
This will be a technique we will use to continuously improve flows until we have a maximum
possible flow.

Lemma 1l Let F = (G,¢,s,t) be a flow network and let f be a flow in F. Let Fy be the
residual nelwork induced by f, and let fy be a flow in Fy. Then the flow sum defined by

(f + fo)(u,0) £ f(u,v) + folu,v)

is a flow in F with value

|f+ Jol = [f]+ | /ol

Proof: In order to show that f + fo is a flow in F, we have to check that the capacity
constraint, skew symmetry, and flow conservation hold.

Capacity Constraint:
(f+ fo)(u,v) = flu,v)+ folu,v) < flu,v)+cp(u,v) = flu,v)+ (c(u,v) — fu,v)) = c(u,v).

Skew Symmetry:
(f + fo)(u,v) = flu,v) + fo(u,v) = = f(v,u) = fo(v,u) = =(f(v,u) + fo(v,u)) =
—(f—|—f0)(U,U).

Flow Conservation:

Let u be a vertex other than s or ¢. Then ZveN(u)(f + fo)(u,v) =
ZUEN(u)(f(u7 v) + fo(u,v)) = ZUEN(u) flu,v) + ZUEN(u) Jo(u,v) =040=0.

It remains to check that |f + fo| = |f| + |fo|. We have |f + fo| = ZveN(s)(f + fo)(s,v) =
Yoven(s)([(8:0) + fols,0)) = X oenis) [(5,0) + Xoens) fols,v) = [fI + | fol. o

Augmenting Paths

Given a flow network F = (G, ¢,s,t) and a flow f, an augmenting path 7 is a simple path
(that is, a path where no vertex repeats) from s to ¢ in the residual graph, G¢; note that every
edge in Gy has positive capacity. Equivalently, an augmenting path is a simple path from s
to t in (G consisting only of edges of positive residual capacity. We will use an augmenting
path to create a flow fy of positive value in F;, and then add this to f as in the above
lemma, in order to create the flow f' = f + fo of value bigger than f.

The maximum amount of net flow we can ship along the edges of an augmenting path 7 is
called the residual capacity of 7. We denote it by c¢(m); because 7 is augmenting, cy(m) is
guaranteed to be positive.

cs(m) = min{cs(u,v) | (u,v) is on 7} > 0.

Lemma 2 Fiz flow network F = (G, ¢, s,1), flow f, augmenting path 7, and define
fri E—=R:

ci(m) if (uy,v) isonm
fo(u,v) = —cy(m) if (v,u) is onm
0 otherwise

Then fr is a flow in Fy, and |fz| = ¢s(7) > 0.

Proof: In order to show that f; is a flow in F;, we have to check that the capacity constraint,
skew symmetry, and flow conservation hold.

Capacity Constraint:
If (w,v)is on 7, then fr(u,v) = ¢f(m) < ¢f(u,v); this last inequality holds since by definition,

4

¢s(m) is the smallest residual capacity of the edges of =.
If (u,v) is not on 7, then fr(u,v) <0 < ep(u,v).

Skew Symmetry:

If (u,v) is on w, then we have f(u,v) = ¢s(n), and fr(v,u) = —cg(m), so

fw(ua U) = —fw(’U, u)

If neither (u,v) nor (v,u) is on m, then fr(u,v) = fr(v,u) =0, so fr(u,v) = —fr(v,u).

Flow Conservation:

Let u be a vertex other than s or ¢.

Let us first consider the case where u is on m. Say that edges (w,u) and (u,v) are on .
Then fr(u,v) = ¢s(n) and fr(u,w) = —cyg(m); for every € N(u) other than v or w, we
have fr(u,z) =0. So ZzeN(u) Jr(u,z) =0.

Now consider the case where u is not on w. Then for every x € N(u), f.(u,z) = 0. So

erN(u) fr(u,z) = 0.

It remains to check that |f;| = ¢f(7). Let (s,v) be the unique edge coming out of s that is
on m. Then fr(s,v) = ¢f(m). For every x € N(s) other than v, we have f(s,z) = 0. So

ZggeN(s) fW(S,l’) = cf(ﬂ-)' |

Corollary 1 Fiz flow network F = (G,c,s,t), flow f, augmenting path 7, and let f, be
defined as above. Let [' = f + f.. Then f" is a flow in F, and

[T =11+ 1=l > 1S
Example: Continuing the previous example, the following diagram shows the residual graph

G consisting of edges with positive residual capacity. The residual capacity of each edge is
also shown. An augmenting path 7 is indicated by — — —. We have

cp(m) = 4.

THE RESIDUAL GRAPH Gy WITH AUGMENTING PATH =

The following diagram shows the network F with flow f' = f + f.. We have
1F = 1f] + 1 fe] = 21 + cp(m) = 21 + 4 = 25.

FLOW NETWORK F WITH FLOW [

v 14/14 U3
[] []
0/8
S -1/10 | | 1/4 17 ° |
[] []
vy 11/15 V4

After creating the improved flow f’, it is natural to try the same trick again and look for an
augmenting path with respect to f’. That is, we consider the new residual graph G and
look for a path from s to t. We see however, that no such path exists.

THE RESIDUAL GRAPH Gy

U1 14 U3
[] []
7 1
13
8 21
s ® 11 (|3 7 o/
1
12 4 4
[] []
(%] 11 U4

All of the above suggests the famous Ford-Fulkerson algorithm for network flow. The algo-
rithm begins by initializing the flow f to the all-0 flow, that is, the flow that is 0 along every
edge. The algorithm then continually improves f by searching for an augmenting path =,
and using this path to improve f, as in the previous lemma. The algorithm halts when there
is no longer any augmenting path.

FORD-FULKERSON(G, ¢, s,1)

Initialize flow f to the all-0 flow
WHILE there exists an augmenting path in Gy DO
choose an augmenting path =

J—f+ [
end WHILE

There are a number of obvious questions to ask about this algorithm. Firstly, how are we
supposed to search for augmenting paths? That is, how do we look for a path from s to ¢
in the graph G;?7 There are many algorithms we could use. However, since all we want to
do is find a path between two points in an unweighted, directed graph, two of the simplest
and fastest algorithms we can use are “depth-first search” or “breadth-first” search. Each of
these algorithms runs in time linear in the size of the graph, that is, linear in the number of
edges in the graph.

The next question is, is the algorithm guaranteed to halt? The answer to this, remarkably,
is NO. If we do not constrain how the algorithm searches for augmenting paths, then there
are examples where it can run forever. These examples are complicated and use irrational
capacities, and we will not show one here.

What if the capacities are all integers? Then it is clear that the algorithm increases the flow
by at least 1 each time through the loop, and so it will eventually halt. (Exercise: fill in the
details of this argument; give a similar argument in case the capacities are only guaranteed
to be rational numbers.) However, this may still take a very long time.

As an example, consider the following flow network with only 4 vertices. If we are lucky
(or careful), the algorithm will choose [s, vy,] for the first augmenting path, creating a flow
with value 1000; it will then have no choice but to choose [s, vy,] for the next augmenting
path, and it will be halt, having created a flow with value 2000. However, the algorithm
may choose [s, vy, v, t] as its first augmenting path, creating a flow with value 1; it may then
choose [s, vy, v1,1] as the next augmenting path, creating a flow with value 2; continuing in
this way, it may go 2000 times through the loop before it eventually halts.

EXAMPLE OF A BAD FLOW NETWORK FOR FORD-FULKERSON:

U1
o
1000 1000
S 1 ol
1000 1000
o
U2

We will see later, however, that if we constrain how Ford-Fulkerson chooses its augmenting
paths, then we can get a version of the algorithm that runs in time polynomial in the size
of the network.

-1

For the moment, we will concern ourselves with one last question about the algorithm. Let’s
assume it does halt; is it then the case that the flow it has found is as large as possible? The
answer turns out to be YES! We know that if an augmenting path exists then the current
flow is not optimal. We want to prove that if there is no augmenting path, then the current
flow s optimal.

This is a very subtle proof. Let us fix flow network F = (G, ¢, s,t), G = (V. E), and flow
f. We are going to introduce the new notion of a cut of F. We will see that if there is no
augmenting path, then there will exist a special cut that shows that f is optimal.

Cuts of Flow Networks

A cut (S,T) of F is a partition of V into S and T'=V — S such that s € S and t € T. We
define the capacity of (S,T') to be the sum of the capacities over all edges going from S to
T; note that this is a sum of nonnegative numbers. We define the flow across (S,T') to be
the sum of the flows over all edges going from S to T'; note that this sum may consist of
negative numbers. More formally:

The capacity of the cut (5, T) is defined by

o8,)= Yy, ey

(z,y)E(SXT)NE

The flow across (5,7 is
8Ty = > fzy)

(z,y)E(SXT)NE

Note that we are slightly abusing notation by extending the definition of flows and capacities
to sets of nodes.

Example: Consider our earlier example of the flow network F with flow f’. Consider
the cut (S,T) = ({s,vs},{t,v1,v2,v4}). We have ¢(S,T) = 20 + 13 + 8 + 22 = 63 and
F(S,T)y=134+ 12+ (—14) + (=7) + 21 = 25.

We see that f(.5,7') in the above example is exactly equal to |f|, and this is no coincidence.
Intuitively it makes sense that the amount flowing out of s should be exactly the same as
the amount flowing across any cut, and this is proven in the next lemma. In particular, by
considering the cut (V —{t}, {t}), we see that |f| is exactly equal to the amount flowing into
L.

Lemma 3 Fiz flow network F = (G, ¢, s,t) and flow f. Then for every cut (S,T),
f5,T) =1f].

Proof Let (S,) be a cut. Consider the following five sets of edges:

=(SxT)N
Ez (SxV)n
E3:(S>< S)QE;
=({s} x V)N E;
= ((5={s}) x V)N E;

First, we claim that > . f(e) = 0. This is because for every edge (u,v) in Fs, (v,u) is
also in K3, and by skew symmetry we have f(u,v)+ f(v,u)=0.

We next claim that Zee& f(e) = 0. This is because flow conservation for every node u other
than s or t allows us to write

EeEE:a f(e) = EUES—{S} ZUEN(“) f(u7 U) - ZuES—{s} 0=0.

Since F, is the disjoint union of F; and Fs, we have

ZeeE2 fle) = ZeEEl fle)+ EeEES fle) = EeeEl f(e).

Since Fs is the disjoint union of F; and Fs5, we have

ZeeE2 fle) = EeEE4 fle)+ EeEE5 fle)= ZeEE4 f(e).
Putting all this together, we have
f(5,T) = ZeEEl fle) = ZEEEQ fle) = ZeeE4 fle) =11l O

Lemma 4 Fiz flow network F = (G, ¢, s,t) and flow f. Then for every cut (S,T),
F(S,T) <e(S,T).

Proof: [(5,T) =2 ce(sxmynp [(€) £ Xeeiswrnpcle) = ¢(S,T). o

Corollary 2 The value of every flow in F is less than or equal to the capacilty of every cut
of F.

We now state and prove the famous “max-flow, min cut” theorem. This theorem says that
the maximum value over all flows in F is exactly equal to the minimum capacity over all
cuts. It also tells us that if F has no augmenting paths with respect to a flow f, then |f]| is
the maximum possible.

Theorem 1 (MAX-FLOW, MIN-CUT THEOREM)

Fiz flow network F = (G, ¢, s,t), G = (V,E), and flow f. Then the following are equivalent
1. fis a mazx flow (that is, a flow of maximum possible value) in F.
2. There are no augmenting paths with respect to f.
3. |f] = (S, T) for some cut (S,T) of F.

Proof:

()= (2)

Suppose (1) holds. We have already seen that if there were an augmenting path with respect
to f, then a flow with value larger than |f| could be constructed. Since f is a max flow,
there must be no augmenting paths.

2) = (3
Suppose (2) holds. Then there is no path from s to ¢ in G/.

Let S = {v € V| there exists a path from s to v in G}, and let T'=V — S. Clearly (S5, 7T)
is a cut. We claim that |f| = ¢(S5,T). From the above Lemma 3, it suffices to show that
F(S,T) = ¢(S,T). For this, it suffices to show that for every edge (u,v) € (S xT)NE,
f(u,v) = ¢(u,v). So consider such an edge (u,v). If we had f(u,v) < ¢(u,v), then (u,v)
would be an edge with positive residual capacity, and hence (u,v) would be an edge of Gy,
and hence (since u € S), there would be a path in Gy from s to v, and hence v € S — a
contradiction.

(3) = (1)

Suppose (3) holds. Let (S,7T) be a cut of F such that |f| = ¢(S,T). From the above
corollary, we know that every flow has value less than or equal to ¢(S,7'), and hence every
flow has value less than or equal to |f|. So f is a max flow.

This theorem tells us that if Ford-Fulkerson halts, then the resulting flow is optimal. Let us
now return to the question of how to modify Ford-Fulkerson so that it is guaranteed to not
only halt, but to halt reasonably quickly.

The Edmonds-Karp version of this algorithm looks for a path in Gy using breadth-first search.
This finds a path that contains as few edges as possible. We call this algorithm FF-EK:

FF-EK(G, ¢, s,t)

Initialize flow f to the all-0 flow
WHILE there exists an augmenting path in Gy DO
choose an augmenting path 7 using breadth-first search in G/

Jf—f+f
end WHILE

Let us assume (without loss of generality) that |F| > |V|. Then breadth-first search finds
an augmenting path (if there is one) in time O(|E|). Using an augmenting path to improve
the flow takes time O(|FE|), so each execution of the main loop runs in time O(|E]).

It is a difficult theorem (that we will not prove here) that the main loop of FF-EK will be
executed at most O(|V||E|) times. Thus, FF-EK halts in time O(|V||F|?). Hence, this is a
polynomial time algorithm. A huge amount of research has been done in this area, and even
better algorithms have been found. One of the fastest has running time O(|V|*).

10

Example: Consider the previous example of flow network F with flow f’. We know that
|f'| = 25, and so the flow across every cut will be 25, and the capacity of every cut will be
greater than or equal to 25. We have seen that there is no augmenting path, so the above
theorem tells us that there must be a cut of capacity 25. It even tells us how to find such a
cut: let S be the set of nodes reachable from s in Gy. In fact, it is easy to check that if we
choose S = {s,v1,v2,v4} and T = {vs,t}, then ¢(S,T) =14 + 7+ 4 = 25.

An Application to Finding Maximum Matchings in Bipartite Graphs

There are many applications of max-flow algorithms to areas which appear very different.
As an example, we shall show how to use a max flow algorithm to find a maximum matching
in a bipartite graph.

A bipartite graph is a directed graph G' = (V, F) where V' is partitioned into two parts L and
R (for left and right) such that all edges go from L to R. Thatis, V= LUR, LNR =, and
FE C L x R. A matching is defined to be a set of edges M C F such that no two (distinct)
edges of M have a vertex in common. The size of M is defined to be |M|, the number of
edges in M. We wish to find a maximum matching, that is, a matching of biggest possible
size.

It turns out that there is a way to convert such a matching problem into a flow problem.
First we add two vertices to create V' = V U {s,1}. We add edges from s to each vertex in
L, and edges from each vertex in R to ¢; all of these edges (including the original edges in
E) are assigned capacity 1. Lastly, we add the the reverse of all these edges, with capacity
0. In this way we form the flow network F = (G',¢,s,t), G' = (V', E'). Consider integer
flows in F, that is, flows that take on integer values on every edge; for each edge of capacity
1, the flow on it must be either 1 or 0 (since its reverse edge has capacity 0). It is easy to
see that Ford-Fulkerson, when applied to a network with only integer capacities, will always
yield an integer (maximum) flow. The following two lemmas show that an integer flow f can
be used to construct a matching of size |f|, and that a matching M can be used to construct
a flow of value |M|. This will allow us to use Ford-Fulkerson to compute a maximum flow
in polynomial time.

Lemma 5 Let G = (V,E) and F = (G',¢,s,t) be as above, and let f be an integer flow in
F. Then there is a matching M in G such that |M| = |f|.

Proof:
Let f be an integer flow. Let M = {(u,v) € L x R| f(u,v) =1.}.

To see why M is a matching, imagine that (u,v;), (u,v,) € M for some vy # vy; since u has
only one edge of positive capacity (namely 1) coming into it, we would have ZveN(u) flu,v) >
1, contradicting flow conservation. (A similar argument shows that no two edges in M can
share a right endpoint.)

11

We now show that |M| = |f|. Recall that |f| is equal to the total flow coming out of s. So
we must have | f| distinct vertices uy, us,. .., ujs such that

f(s,u1) =1, f(s,uz) = 1,..., f(s,uy) = 1. So in order for flow conservation to hold, for
each u; we must have some v; € R such that f(u;,v;) = 1. So (u;,v;) € M for each ¢, and

we have |M| = |f]. o

Lemma 6 Let G = (V. F) and F = (G',¢,s,1) be as above, and let M be a matching in G.
Then there exists a flow [in F with |f| = |M|.

Proof:

Let M = {(u1,v1), (uz,v2), ..., (upmp, o) € L x R} be a matching. Define f by

f(Svui) = 17 f(ui,vi) = 17 f(viat) =1 (and f(ui,S) = _17 f(vi,ui) = _17 f(tavi) = _1) for
each 1, and f(e) = 0 for every other edge e € E’. It is easy to check that f is a flow, and
that |f| = | M| (exercise).

We now see how to use Ford-Fulkerson to find a maximum matching in G = (V| F'). Assume,

without loss of generality, that |V| < |E|. Note that |V'| € O(|V|) and |E'| € O(|E]).

We first construct F = (G', ¢, s,1) as above; this takes time O(|F|). We then perform the
Ford-Fulkerson algorithm to create a maximum flow f. We observe that this algorithm, no
matter how we find augmenting paths, will increase the flow value by exactly 1 each time,
and hence will execute its main loop at most |V| times. If we use an O(|E]) time algorithm
to search for augmenting paths, then each execution of the loop will take time O(|E|). So
the total time of the Ford-Fulkerson algorithm here is O(|V||E|). Lastly, we use the integer
flow f to create a matching M in (G such that |M| = |f[; this takes time O(|F|). The last

lemma above tells us that since f is a maximum flow, M must be a maximum matching.

So the entire maximum matching algorithm runs in time O(|V||E|). This is a polynomial
time algorithm. Faster algorithms have also been found. For example, there is an algorithm

for this problem that runs in time O(+/|V||E]).

Example: The following is an example of a (directed) bipartite graph . The next figure
shows the network F derived from G, together with a maximum flow f in F. The last figure
shows the maximum matching M obtained from f.

12

A BIPARTITE GRAPH G"

FLOW NETWORK F DERIVED FROM G, WITH A MAXIMUM FLOW f:

-
.\.

A MAXIMUM MATCHING IN ¢ DERIVED FROM FLOW f:

1/1
%\
ot
o/
/1

13

