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Lecture 7

Announcements

I Tutorial this Friday.
I Tyrone Strangway will give a guest lecture Monday on equilibirum

pricing.
I Assignment due date is October 7.
I Slides for Lecture 6 have been posted.

Today’s agenda

I A quick comment on normal form vs extensive form games
I Congestion games
I Potential games
I Braess paradox and the Price of Anarchy (POA)
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Normal vs extensive form games

The difference between games in normal form and games in extensive form
is that normal form assumes the game is played simultaneously by all
players while extensive form assumes the games is being played in rounds.

But it is important to note that almost all the concepts we have been
discussing apply equally to both settings (with the exception being
subgame-perfect equilibrium). More specifically: the following are relevant
in both settings:

Payoffs can be profits (to be maximized) or costs (to be minimized).

Dominant strategies

Mixed Strategies

Pure and mixed Nash equilibrium

Optimal and Pareto optimal strategies

Bayesian settings

Repeated games
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Congestion games

We return to Chapter 4 (normal form games) and a special class of games.
And again following what was said in the last slide, such games can be
discussed with respect to both normal and extensive form.

Quoting wikipedia: Congestion games are a class of games consisting of
players and resources where the payoff (or cost) to each player depends on
the resources it uses and the number of players choosing the same
resource. That is, and more generally, the payoff or cost depends on the
congestion on each resource.

Congestion games can be finite (i.e. finitely many players each having
finitely many pure strategies) or infinite or even continuous (where there
can be a continuum of players and/or strategies for a player). Where it is
helpful, we can view a continuous congestion game as the limiting case as
the number n of players goes to infinity. Chapter 4 introduces an example
(the road congestion game) of a finite congestion game and a continuous
variant of this game is considered in Chapter 8.
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The road network congestion game

The finite road network congestion game consists of a finite number k of
players (i.e. drivers), each player i needing to choose a path Pi in a
network (i.e. a graph or directed graph) from some given source node si to
a given destination node ti . The resources are the edges in the network.

For the particular example (4.4.1) in Chapter 4, the defined congestion
cost on an edge e to any driver i using a path Pi that contains e is some
function ce(n) of the number n of drivers choosing a path containing e.
(Although not necessary, it is usually assumed that ce() is non-decreasing.)
The total congestion cost to a driver is the sum of edge congestions
incurred by the driver. That is, for a strategy profile P = (P1, . . . ,Pk), we
have:

costi (P) =
∑
e∈Pi

ce(ne(P))

where ne(P) = |{j : e ∈ Pj}|; i.e. the number of drivers using edge e.
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Potential games

We will now see that this congestion game (and more generally every
congestion game) is a potential game.

Potential games

In a k-player potential function game with strategy profiles {S1, . . . ,Sk},
there is a potential function ψ : S1 × S2 · · · × Sk → R satisfying:

ψ(si , s−i )− ψ(s ′i , s−i ) = ui (si , s−i )− ui (s ′i , s−i )

for all si , s
′
i , s−i .

In our congestion game, the potential function is :

ψ(P) =
∑
e

ne(P)∑
`=1

ce(`)
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Observations regarding the congestion game
potential function

ψ(P) =
∑
e

ne(P)∑
`=1

ce(`)

This potential function on k strategies naturally induces a potential
function on k − 1 strategies.

This function does not depend on the order in which players arrive.

Furthermore, it can be shown that:

ψ(P) = ψ(P−i ) + costi (P) for all i

.

Indeed this last property is common to all potential functions, namely:

ψ(s) = ψ(s−i ) + ui (s) for all i
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Potential games: the good

The good news:

Finite potential games have pure NE

In any finite potential game, repeated (better) play dynamics must
convege to a pure Nash equilibrium. That is, if a potential game is played
in rounds or steps, and in each round, any player who can improve their
utility by changing to a different pure strategy does so, then this process
will converge to pure NE in a finite number of steps. In particular, best
response dynamics will converge to a pure NE.

Proof sketch: The potential function is non-negative. For a cost problem,
each improvement step lowers the cost to an agent and therefore decreases
the potential function. This insures the process must converge tp a pure
Nash.
For a maximization problem, the fact that there are only finitely many
configurations, and that each improvement step is increasing will imply
covergence to a pure Nash.
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The bad news and a few more comments about
potential games

The bad news: Finding an appropriate potential function may not be that
easy and hence one may not know a-priori that repeated play dynamics
will converge.

Those familiar with amortized analysis and more generally algorithm
analysis, will recall the use of potential functions.

For some special cases of potential games, there are polynomial time
algorithms to find a pure Nash but in general there is again evidence (like
for games in general) that the problem is hard (i.e. might require
exponential time).

One final comment (for now) regarding potential functions is that there is
a converse to the fact that every congestion game is a potential game.
Namely, for every potential function game, there is a congestion game
with the same potential funtion.
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An infinite road network game

We consider consider a network with a single source and destination and
the goal is to send one unit of flow from s to t. The infinite strategy space
is to send fractions of flow along different paths.

As suggested infinite congestion games can be thought of as the limiting
process of games with a large number of players.

In this case, we can think of having some large number k of drivers each
selfishly choosing a path so as to minimize its time to arrive at the
destination. For k =

∑
i ki , if ki drivers choose some path Pi , then we can

let fi = ki/k be the fraction of drivers choosing path Pi . As k →∞, we
are limiting to the infinite continuous game.

We are interested in how much does the social welfare (i.e. the sum of all
driving times) suffer from such selfish routing.
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The infinite network game with linear latency (i.e.
cost) functions

We will consider linear latency functions where the delay of traversing an
edge e with a fraction x of the unit flow is defined as an affine linear
function `e(x) = ae · x + be where we can assume that the scalars ae and
be are non negative so that `e(x) is non-negative and non-decreasing. In
particular, the delay on an edge could be a non-negative constant (when
ae = 0) not depending on the fraction x or the delay will increase with x if
ae > 0.

Surprisingly, for such networks, adding “fast” additional roads (i.e. edges)
can increase the social welfare (i.e. the sum of driving times) at equilibrium
when drivers are selfish agents. This is known as the Braess Paradox.
Equivalently removing a road can improve the social welfare at equilibrium.
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The Braess paradox and the price of anarchy

We have already introduced the price of anarchy as the worst case ratio of
the social welfare cost at equilibrium to the cost of an optimal solution.
The Braess paradox shows that this price of anarchy for linear latency
function is at least 4

3 and this holds for a very simple network example.

We will also show that this simple network exhibits the worst possible price
of anarchy.

As the text poins out, this seemingly peculiar game theory phenomena
played out in New York City when the city decided to close one of its most
congested streets. Instead of causing chaos, the total travel time (and
hence the average travel time for drivers) actually improved!
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The impact of adding a super fast road to a simple
network

Consider the following simple network in Figure 8.1 of the KP text with
the indicated latency functions.

CHAPTER 8

The price of anarchy

In this chapter, we study the price of anarchy, the worst-case ratio between
the quality of a socially optimal outcome and the quality of a Nash equilibrium
outcome.

8.1. Selfish routing

On Earth Day in 1990, the New York City tra�c commissioner made the de-
cision to close 42nd Street, one of the most congested streets in Manhattan. Many
observers predicted that disastrous tra�c conditions would ensue. Surprisingly,
however, overall tra�c and typical travel times actually improved. As we shall see,
phenomena like this, where reducing the capacity of a road network actually im-
proves travel times, can be partially explained with game theory as Example 8.1.1
shows.

1 unit of traffic
 flows in

1 unit of traffic 
flows out

no congestion
latency always 1

latency depends 
linearly on congestion

A B

D

C

1 unit of traffic
 flows in

1 unit of traffic 
flows outA

D

1

1

B

C
1
2

1
2

latency 1

1
2latency

1
2latency

latency 1

Figure 8.1. Each link in the left figure is labelled with a latency func-
tion `(x) which describes the travel time on an edge as a function of the
congestion x on that edge. (The congestion x is the fraction of tra�c
going from A to B that takes this edge.) In Nash equilibrium, each
driver chooses the route that minimizes his own travel time, given the
routes chosen by the other drivers. The unique Nash equilibrium in
this network, shown on the right, is obtained by sending half the tra�c
on top and half on bottom. Thus, the latency each driver experiences
is 3/2. This is also the optimal routing, i.e., it minimizes the average
latency experienced by the drivers.

Example 8.1.1 (Braess Paradox). A large number of drivers head from point
A to point B each morning. There are two routes, through C and through D. The
travel time on each road may depend on the tra�c on it as shown in Figure 8.1.
Each driver, knowing the tra�c on each route, will choose his own path selfishly,
that is, to minimize his own travel time, given what everyone else is doing. In this
example, in equilibrium, exactly half of the tra�c will go on each route, yielding
an average travel time of 3/2. This setting, where the proportion of drivers taking
a route can have any value in [0, 1] is called “infinitesimal drivers”.

153

Figure : The initial network in the Braess paradox

In order to have an equilibrium, it should be clear that the total travel on
these two disjoint paths must be equal. It follows that there is a unique
equilibrium, namely when x = 1

2 so that the social welfare is 3
2 .
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The impact of adding a super fast road to a simple
network conitnued

Now as in Figure 8.2 of the KP text, consider adding a super fast road
between nodes C and D.
Note: Setting the road latency to 0 is just a convenience setting the
latency to some relatively small ε.

154 8. THE PRICE OF ANARCHY

Now consider what can happen when a new, very fast highway is added between
C and D. Indeed, we will assume that this new route is so fast that we can simply
think of the travel time on it as being 0.

01 unit of traffic
 flows in

1 unit of traffic 
flows out

1

1

A

D

B

Cx

x

1 unit of traffic
 flows in

1 unit of traffic 
flows outA

D

B

C
1
2

1
2

latency 1

1
2latency

1
2latency

latency 1

optimal flow

1 unit of traffic
 flows in

1 unit of traffic 
flows out

1
A

D

B

Clatency 1

latency 1

latency
0

Nash equilibrium flow

Figure 8.2. The Braess Paradox: Each link in the top figure is labelled
with a latency function `(x) which describes the travel time on that edge
as a function of the fraction x of tra�c using that edge. These figures
show the e↵ect of adding a 0 latency road from C to D: The travel time
on each of �C = A � C � B and �D = A � D � B is always at least
the travel time on the new route � = A � C � D � B. Moreover, if a
positive fraction of the tra�c takes route �C (resp. �D), then the travel
time on � is strictly lower than that of �C (resp. �D). Thus, the unique
Nash equilibrium is for all the tra�c to go on the path �, as shown in
the bottom left figure. In this equilibrium, the average travel time the
drivers experience is 2 as shown on the bottom left. On the other hand,
if the drivers could be forced to choose routes that would minimize the
average travel time, it would be reduced to 3/2, the social optimum, as
shown on the bottom right.

One would think that adding a fast road could never slow down tra�c, but
surprisingly in this case it does: As shown in Figure 8.2, average travel time in
equilibrium increases from 3/2 to 2. This phenomenon, where capacity is added
to a system and, in equilibrium, average driver travel time increases is called the
Braess Paradox.

We define the socially optimal tra�c flow to be the partition of tra�c
that minimizes average latency. The crux of the Braess Paradox is that while the
social optimum can only improve when roads are added to the network, the Nash
equilibrium can get worse.

We use the term price of anarchy to measure the ratio between performance
in equilibrium and the social optimum. In Example 8.1.1,

price of anarchy :=
average travel time in worst Nash equilibrium

average travel time in socially optimal outcome
=

2

3/2
=

4

3
.

In fact, we will see that in any road network with a�ne latency functions, and
infinitesimal drivers, as in this example, the price of anarchy is at most 4/3! We will

Figure : The network after a super fast road has been added

Now what equilibrium results?

It is not difficult to see that the unique
equilibrium is now for every driver to follow the path A→ C → D → B
(i.e. setting x = 1) with social welfare 2. POA = 4

3 ..
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