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Lecture 5

Announcements

I Tutorial this Friday in SS 1086
I First 3 questions for assignment 1 have been posted.
I Another talk of possible interest: Thursday, September 29, there will

be a seminar “When Should an Expert Make a Prediction?” by Amir
Ban. The talk will take place in the first floor conference room of the
Fields Institute, 222 College Street. The time will either be at noon or
at 1PM.

Today’s agenda

I Expressing the value of a zero-sum game as an LP
I The LP duality theorem;
I Yao’s minimax theorem;
I The hide and seek game; maxmimum matching in a biparite graph
I Briefly returning to general sum games; many player games
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Two important computational applications of the
minimax theorem

We ended the last lecture mentioning two important applications of the
minimax theorem.

1 The first application is actually an equivalent result, namely the (LP)
duality theorem of linear programming (LP). Linear programming is
one of the most important concepts in combinatorial optimization
(leading to efficient optimal and approximation algorithms) and LP
duality is arguably the central theorem of linear programmming. Since
LPs can be solved optimally in polynomial time, this will imply that
(unlike general-sum NEs), we can always solve zero-sum games (i.e.
find the mixed strategies that yield the value of the game).

2 The second application is The Yao Principle which is a direct
consequence of the minimax theorem and is a basic tool in proving
“negative” results for randomized algorithms.
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Integer programming, linear programming and LP
duality

An integer program (IP) (resp. LP) formulates an optimization problem as
the maximization or minimization of a linear function of integral (resp.
real) variables subject to a set of linear inequalities and equalities.

Most combinatorial optimization have reasonably natural IP (and
sometimes LP) formulations. But solving an IP is an NP complete problem
so that one does not in general expect efficient algorithms for optimally
solving IPs. However, many IPs are solved “in practice” by IPs and there
are classes of IPs that do have worst case efficient algorithms.

Another important idea in approximately solving IPs is to relax the integral
constraints to real valued constraints (e.g. xi ∈ {0, 1} is relaxed to
xi ∈ [0, 1]) and then “rounding” the fractional solution to an integral
solution.
Note: if the objective function and all constraints have rational
coefficients, then we can assume rational solutions for an LP.
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Interger programming, linear programming and LP
duality continued

In contrast to IPs, LPs can be optimally solved in polynomial time (e.g. by
interior point methods) . In addition to having polynomial time methods
for solving LPs, Dantzig’s simplex method (with different pivoting rules) is
widely used “in practice” and often provides efficient solutions.

Furthermore, one can often use LP duality theory to yield good
approximations (and provable limitations for a given LP formulation)
without solving the LP.

We next show how optimal mixed strategies can be solved by LPs, and
provide a precise statement of LP standard form and LP duality.
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LP formulation of optimal mixed strategies

Consider a two person zero-sum game represented by an m × n matrix A.
To verify that the row player’s mixed strategy x has an expected gain of at
least value v , it is sufficient (and necessary) to show that the expected gain
is at least v for every pure strategy of the column player. That is, in vector
notation, we need to guarantee ATx ≥ ve where e is the all 1’s vector.

The goal of the row player can then be stated as the following LP:
Maximize v Subject to: ATx ≥ ve∑

1≤i≤m xi = 1
xi ≥ 0 for all i ; 1 ≤ i ≤ m

Similarly, the optimal mixed strategy for the column player is to:
Minimize v Subject to: Ay ≤ ve∑

1≤j≤n yj = 1
yj ≥ 0 for all j : 1 ≤ j ≤ n
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An example of how to compute value (and mixed
strategies) for zero sum game

Recall the Penalty Kick Game that we saw in Lecture 4.
10 PREFACE

goalie
L R

k
ic

k
er

L 0.58 0.95
R 0.93 0.70

Here ‘R’ represents the dominant (natural) side for the kicker. Given these probabilities,
the optimal strategy for the kicker is (0.38, 0.62) and the optimal strategy for the goalie
is (0.42, 0.58). The observed frequencies were (0.40, 0.60) for the kicker and (0.423, 0.577)
for the goalie.

The early history of the theory of strategic games from Waldegrave to Borel is dis-
cussed in [DD92].

Figure: Probability matrix for scoring based on data from professional games

The LP formulation for this game is as follows:

Maximize v Subject to: .58x1 + .93x2 ≥ v∑
1≤i≤2 xi = 1

xi ≥ 0 for all i ; 1 ≤ i ≤ 2
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Using the LP solver

Using the LP solver for the penalty kick data matrix, we have :

max: v;
.58 x1 + .93 x2 >= v;
.95 x1 + .70 x2 >= v;
x1 + x2 = 1;

Results of the solver:
Value of objective function: 0.795833
Actual values of the variables:
v 0.795833
x1 0.383333
x2 0.616667
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LP standard form and LP duality

The minimax theorem tells us that these two LPs, must have the same
optimal value v . This is an example (after some messaging to place the
constraints iin standard form) of LP duality.

LP maximization in standard form

Any maximization LP can be stated in the following standard form:
Maximize cTx Subject to Ax ≤ b

x ≥ 0
We will refer to this LP as the primal LP.

The minimization dual LP (in standard form) of the above primal

Minimize bTy Subject to ATy ≥ c
y ≥ 0

We could alternatively start with a minimization problem in standard form
as the primal and then the dual is a maximization problem in standard
form. Moreover, the dual of the dual is the primal.
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LP duality theorem of linear programming

Let P (resp. D) denote the primal and dual LPs (in standard form) and let
F(P) (resp F(D)) be the feasible sets for P (resp. D).

The duality theorem

F(P) has a finite optimum iff F(D) has a finite optimum. Furthermore, if
x∗ and y∗ are optimal solutions for the primal and dual LPs, then
cTx∗ = bTy∗.

Similar to the easy direction of the minimax theorem, there is a “weak
duality” direction. Assume again that F(P) (and therefore resp. F(D))
has a finite optimum x∗ (resp y∗). Then

The weak duality theorem

cTx∗ ≤ bTy∗.

The weak direction is often used to provide an upper bound (resp. a lower
bound) on the optimal value of a maximization (resp. minimization)
problem.
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Motivating duality

Example in V. Vazirani’s “Approximation Algorithms” text:
Primal Dual
minimize 7x1 + x2 + 5x3 maximize 10y1 + 6y2
subject to subject to

(1) x1 − x2 + 3x3 ≥ 10 y1 + 5y2 ≤ 7

(2) 5x1 + 2x2 − x3 ≥ 6 −y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5

x1, x2, x3 ≥ 0 y1, y2 ≥ 0

Adding (1) and (2) and comparing the coefficient for each xi , we have:
7x1 + x2 + 5x3 ≥ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 10 + 6 = 16
Better yet, 7x1 + x2 + 5x3 ≥ 2(x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 26
For an upper bound, setting (x1, x2, x3) = (7/4, 0, 11/4)
7x1 + x2 + 5x3 = 7 · (7/4) + 1 · 0 + 5 · (11/4) = 26
This proves that the optimal value for the primal is at least 26.
Setting (y1, y2) = (2, 1), the dual is at most 26 so optimal value = 26.
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Randomized algorithms and Yao’s minimax principal

We will soon state Yao’s principle which provides a basic methodology for
analyzing the “cost” of randomized algorithms.

Suppose we are intetrested in considering a finite class A of deterministic
or randomized algorithms for a computational problem restricted to a finite
set of inputs. More specifically, lets restrict attention to inputs of “size” n.

For example, the size of the input can refer to the number of bits in a
binary representation of the input.

The cost of a deterministic algorithm can be the number of time steps, or
the number of memory cells being used. If A is solving (say) a
minimization problem, the cost could be the largest (i.e. worst) value
produced by the algorithm (when restricted) to inputs of size n).

We can think of a randomized algorithm as a distribution R over
deterministic algorithms and the cost of such an algorithm as the expected
cost where the expectation is over the randomness used.
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Randomized complexity and distributional
complexity

One measure of interest is the randomized complexity of the given
problem; namely, the worst case (over all inputs of size n) of the cost of
the best randomized algorithm (from the class A). That is,

min
R

max
w :size(w)=n

EA∈R[cost(A,w)]

Another measure of interest is the worst case distributional complexity of
the given problem; namely, the worst case (over all distributions of inputs
of size n) of the cost of the best deterministic algorithm. That is,

max
D

min
A∈A

Ew∈D[cost(A,w)]
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Yao’s minimax principal

We can now think of a zero-sum game between a row player whose
strategy is to choose an input from a distribution D and a column player
whose strategy is to choose an algorithm from a distribution R of
algorithms. Yao’s principle (from a seminal 1977 paper by Andy Yao) is
then the application of the minimax theorem to this game. Namely,

Yao’s principle

max
D

min
A∈A

Ew∈D[cost(A,w)] = min
R

max
w :size(w)=n

EA∈R[cost(A,w)]

In words, the distributional complexity is equal to the randomized
complexity. It is usually the “weak direction” of Yao’s principle that is used
to establish lower bounds on the randomized complexity; that is, to show a
lower bound C (n) on the randomized complexity of a problem it suffices to
establish a distribution D on inputs such that every deterministic
algorithm (in the class A) will have expected cost at least C (n).
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Zero-sum games on graphs

Chapter 3 provides a nice opportunity to introduce the use of graphs (and
graph theory) in many aspects of game theory, mechanism design and
social choice. One particular class of graphs, bipartite graphs, are often of
interest.

For example, later we will discuss unit demand auctions for a set of distinct
items, which can be modeled as an edge weighted bipartite graph. We will
also be considering “stable matchings” which are used (for example) to
match residents to hospitals and also is refered to stable marriages.
For now we will just mention one example (the “hide and seek game”) and
its relation to maximum matchings in bipartite graphs, a topic discussed in
section 3.2 of the KP text.

Who is and who is not familiar with basic graph theoretic concepts?

I am assuming everyone is familiar with basic graph theoretic concepts but
if not I will provide a quick tutorial (now or in a tutorial).
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The hide and seek game; section 3.2 of KP

The hide and seek narrative (slightly sensationalized): example
3.2.1 in KP text)

A terrorist is hiding in one of a few known safe houses in a city (basically)
organized by east-west streets and north-south avenues (like Manhatten in
NYC, Seattle, etc.) The safe houses are located at the intersections. An
FBI agent plans to drive down one of the streets or avenues and will be
able to identify the location of the terrorist (say with some probability) and
has an expected winning payoff (which we set to 1) if she drives down the
street or avenue where the terrorist is hiding; otherwise, the payoff is 0.

What strategy should the FBI agent take?

What strategy should the terrorist use?
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The graph theoretic model and optimal strategies

3.2. HIDE-AND-SEEK GAMES 59

POLICE

1001
0
0

100

Figure 3.5. The figure shows an example scenario for the Hide-and-
Seek game. In this example, the robber chooses to hide at the safehouse
at the intersection of 2nd St. and 4th Ave., and the cop chooses to travel
along 1st St. Thus, the payo↵ to the cop is 0.

following matrix corresponds to Figure 3.5:0
@

0 1 0 1 0
0 0 0 1 1
0 1 0 1 0

1
A

The cop’s actions correspond to choosing a row or column of this matrix and
the robber’s actions correspond to picking a 1 in the matrix.

Clearly, it is useless for the cop to choose a road that doesn’t contain a safe-
house; a natural strategy for her is to find a smallest set of roads that contain
all safehouses, and choose one of these at random. Formally, a line-cover of the
matrix H is a set of lines (rows and columns) that cover all nonzero entries of H.
The proposed cop strategy is to fix a minimum-sized line cover C and choose one
of the lines in C uniformly at random. This guarantees the cop an expected gain of
at least 1/|C| against any robber strategy.

Next we consider robber strategies. A vulnerable strategy would be to choose
from among a set of safehouses that all lie on the same road. The “opposite” of
that is to find a maximum-sized set M of safehouses, where no two lie on the same
road, and choose one of these uniformly at random. This guarantees that the cop’s
expected gain is at most 1/|M|.

It is not obvious that the proposed strategies are optimal. However, in the next
section, we prove that

|C| = |M| (3.1)

This implies that the proposed pair of strategies is jointly optimal for Hide-and-
Seek.

3.2.1. Maximum matching and minimum covers. Given a set of boys
B and a set of girls G, draw an edge between a boy and a girl if they know each
other. The resulting graph is called a bipartite graph since there are two disjoint
sets of nodes, and all edges go between them. Bipartite graphs are ubiquitous.
For instance, there is a natural bipartite graph where one set of nodes represents

One can represent the problem using a bipartite graph G = (U ∪ V ,E )
where U represents the set of streets and V the set of avenues and then
the set of edges E ⊆ U × V corresponds to the intersections of the safe
houses.
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The strategies for the FBI and the terrorist

Since the FBI wants the best chance to find the safe house by
traversing a single street or row, its best strategy is to first find a
minimum size line cover C ; that is, a set of streets and avenues (i.e.
C ⊆ U ∪ V ) that covers all possible safe hiding places (i.e. that is, C
“covers” all the edges in G . In graph theory terms, the FBI is seeking
a minimum vertex cover for the graph G . Then the strategy would be
to uniformly at random choose a “line” in C .

The strategy of the terrorist is to first find a maximum size set M of
safe houses such that none lie on the same street or avenue and then
choose uniformly at random from M. In graph terms, M is called a
maximum matching.
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What does graph theory tell us?

König’s Theorem (which uses Hall’s Marriage Theorem) shows that in a
biparite graph, the size of a minimum vertex cover is equal to the size of a
maximum matching.

Aside: It is known how to efficiently compute a maximum matching in
any graph and this can be used to find a minimum size vertex cover in a
bipartite graph. On the other hand, computing a minimum size vertex
cover for an arbitrary graph is an “NP-complete problem” (although a
problem that is often solved well “in practice”).

Hall’s Marriage Theorem

Let G = (U ∪ V ,E ) be a bipartite graph and (without loss of generality)
let |U| = m ≤ n = |V |. Then a necessary and sufficient condition for
having a maximum matching of size m is that the neighborhood
Nbhd(S) = {v ∈ V |∃(u, v) ∈ E} of every subset S ⊆ U has size at least
|S |.
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Alternative interpretations for Konig’s Theorem

If we formulate a natural {0,1} integer program IP (i.e. all
coefficients are in {0, 1}) for maximum matching in a bipartite graph,
and P is the LP relaxation of this IP, then it is known that the IP
optimum is equal to the LP optimum.

Note solving IPs is an NP hard optimzation probelm and usually an
LP relaxtion has a much better optimum

The dual of this primal P is a formulation of the vertex cover problem.

We can also express the bipartite graph as a vertex-edge adjacency
{0,1} matrix. This then directtly expresses the hide and seek game as
a zero-sum game where the row player is the vertex (i.e. FBI player)
trying to maximize the value of a row strategy which is the number of
1’s in that row. The column player (the terrorist) is trying to
minimize the chance of being found.
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Returning to general-sum games

While we mainly discussed two person general-sum games at the start of
the course, we did indicate that the concepts being introduced applied to
games with a finite but arbitrary number of players. We will now state
those concepts in the context of k ≥ 2 players.

Let Si be the set of possible strategies for the i th player. A pure strategy
profile (s1, s2, . . . , sk) specifies the pure strategies of the k players with
si ∈ Si being a strategy of the i th player. We follow standard notation and
let s−i denote the pure strategies for all players except player i ; that is,
s−i = (s1, . . . si−1, si+1, . . . , sk) and then let
(si , s−i ) = (s1, s2, . . . , si . . . , sk).

More generally, a mixed strategy profile (x1, x2, . . . , xk) specifies the mixed
strategies of the k players with xi being the strategy of the i th player. And
similarly, x−i denotes the mixed strategies all players except player i so
that (xi , x−i ) = (x1, x2, . . . , xi , . . . , xk). We let xi (s) denote the
probability that the i th player chooses strategy s ∈ Si .
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Pure and mixed NE and recalling Nash’s theorem

uj(s) denotes the payoff (or utility) of agent j when the players are playing
the pure strategy profile s. A pure strategy profile (s∗1 , . . . , s

∗
k ) is a pure

NE if for each player j and for each strategy sj for player j , we have:

uj(s
∗
j , s∗−j) ≥ uj(sj , s

∗
−j)

For a mixed strategy profile (x1, x2, . . . , xk), the utility for player j is

uj(x1, x2, . . . , xk) =
∑

s1∈S1,...sk∈Sk

x1(s1) · · · xk(sk)uj(s1, . . . , sk);

that is, uj(x1, x2, . . . , xk) is the expected value of the j th player when the
players are using the mixed strategy profile.
Finally, we can define a mixed NE for an arbitrary number k ≥ 2 of
players. Namely, (x∗1, . . . x

∗
k) is a mixed NE if

uj(x
∗
j , x
∗
−j) ≥ uj(xj , x

∗
−j)

for all j and all mixed strategies xj for the j th player.
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How to visualize and analyze normal form games for
many players

While in principle, we can just specify all the relevant probability vectors
and the utitilies for each pure strategy profile. Nash’s theorem applies to
any finite number of players each having finitely many strategies. So there
must be at least one mixed (possibly pure) NE. And we can again use the
principle of indifference to find possible mixed NE.

But in practice, this is not so easy to manage. For 3 player games there is
a standard way that one often uses to display such games. Namely for say
the 3rd player, we proved a matrix for each possible pure strategy of the
3rd player where each entry of these matrices consists of a vector of the
payoffs fpor the 3 players.

This is how the text specifies the Pollution game in section 4.3 amongst 3
players where each player has two strategies, namely to purify or to pollute.
The analysis whill the lead to some quadratic equations form which the
possible NE are calculated. It then utilizes the principle of indifference
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