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Lecture 4

@ Announcements

» Tutorial this Friday in SS 1086

> First 3 questions for assignment 1 have been posted.

» Talk of possible interetst: This coming Tuesday, September 20, there
will be a seminar “Preferences and Manipulative Actions in Elections”
by Gabor Erdelyi. The talk will take place in Pratt 266 at 11AM.

» Another talk of possible interest: Thursday, September 29, there will
be a seminar “When Should an Expert Make a Prediction?” by Amir
Ban. The talk will take place in the first floor conference room of the
Fields Institute, 222 College Street. The time will either be at noon or
at 1PM.

@ Today's agenda

» Briefly discuss some terminology
» Zero-sum games; Read chapter 2 (excluding section 2.6) and section
3.2 (Hide and Seek Games)



Some terminology

@ In lecture 2, we mentioned the concept of a dominant strategy. | have
clarified that discussion. Here is how that now reads:

A (weakly) dominant strategy D for a player P is one in which P will
achieve the maximize payoff possible for any given strategy profile of
the other players. (Usually one assumes that D is better for P for at
least one strategy profile of the other players. If two strategies have
the same value for all strategy profiles of the other players, then we
do not have to distinguish these two strategies.)

A strictly dominant strategy is one that yields a better value for all
strategy profiles of the other players.

Unless otherwise stated, dominate strategy will mean weakly
dominant and we will assume that there do not exist two strategies
for a player that have the same value for all strategy profiles of the
other players.



Terminology continued

@ In the critique of Nash equilibria, | mentioned that so far we have only
been discussing “full information games”. That terminology is not
standard. | am now changing that to the following terminology that is
consistent with the text and reasonably well (although perhaps not
universally) accepted:

There are two distinctions to be made, games of perfect vs imperfect
information and complete vs incomplete information. The discussion
thus far has been restricted to games of perfect and complete
information where we know everyones strategies and precise values for
all strategy profiles. When we do not know the precise values but
have a probabilistic prior belief about the distributions of the values,
then we have a Bayesian game of perfect but incomplete information.

We return to these distinctions in Chapter 6 (Games in extensive
form).



Zero-sum games

We now jump back to Chapters 2 and 3 (but only section 3.2) in the KP
text where the topic is zero-sum games which are a restriction of
general-sum games.

In two player general-sum games, each entry of the payoff matrix U[i, ] is
a pair (ajj, bi j) where a;; (respectively, b; ;)) is the payoff for the first (i.e.
row) player (resp. the payoff for the second player) when the first player
uses strategy i and the second player uses strategy j.

Note: In the chapters on zero-sum games, strategies are often called
“actions”.
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a pair (ajj, bi j) where a;; (respectively, b; ;)) is the payoff for the first (i.e.
row) player (resp. the payoff for the second player) when the first player
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“actions”.

In a zero-sum game, we have a; j = —b; j for all i,j. That is, what one
player (say the row player) “gains” the other playeer loses. In particular,
we can have two player games where each entry of the matrix is either +1
or -1; that is, when one player wins the game, the other loses and we often
consider “which player has a winning strategy”.

Since a; j determines b; j, we only need to specify a;; so that we will

represent zero-sum games by a real-valued matrix A with A[i,j] = a;; . |



Zero-sum games: revisiting some concepts

As in general-sum games, we will again have pure and mixed strategies
and for any choice of player strategies there is a well defined payoff to each
player. We will also always have mixed Nash equilibria (and sometimes
pure equilbria). Zero-sum games are, however, quite special and we will
see that they will possess a special property. Namely,

@ There is the concept of the value V of the game which is an amount
that one player can guarantee as its minimum expected gain and the
other can guarantee as its maximum expected loss.
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As in general-sum games, we will again have pure and mixed strategies
and for any choice of player strategies there is a well defined payoff to each
player. We will also always have mixed Nash equilibria (and sometimes
pure equilbria). Zero-sum games are, however, quite special and we will
see that they will possess a special property. Namely,

@ There is the concept of the value V of the game which is an amount
that one player can guarantee as its minimum expected gain and the
other can guarantee as its maximum expected loss.

@ Every Nash equlibrium has the same payoff to each player, the payoff
being the value V of the game. Recall that in general-sum games
there can be many NE with different payoffs to the individual players.
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Von Neumann’s Minimax Theorem and the value of
a zero sum game

Let Ay be the set of probability distributions over a set of k possiibilities.

Suppose player 1 has m possible strategies and player 2 has n possible
strategies. Then (as before) we can represent a mixed strategy by a pair of
vectors (x,y) where x = (x1,...,xm) € A, with x; being the probability
that player 1 chooses strategy i and similarly y = (y1,...,yn) € A, with
yj the probability that player 2 chooses strategy ;.

Von Neumann’s Minimax Theorem and value V of a game

Let Alaj] be the payoff matrix for a zero sum game. Then
V' = maxxea,, Minyea, xT Ay = Minyc A, MaXxeA,, xT Ay

Lets understand the meaning of this result using a few examples of
zero-sum games; then we will return to discuss the significance of the
result and a sketch of its proof.



A zero-sum game with a pure NE

player II
action 1 action 2
— | action 1 2 3
% action 2 1 0
o,

Figure : Example in section 2.3.1 in KP text

In this game, the pair (action 1,action 1) is a pure NE (also called a saddle
point in definition 2.3.1 of KP text). The value of this game is 2. That is,
no matter what player Il does, player one is guaranteed a gain of at least
2, and no matter what player | does, player |l can lose at most 2.



Pick a hand: an example of a zero sum game with
no pure NE

Figure : The “pick a hand” game; figure 2.1 in KP text

Hider
_ L1 R2
Z[L]1 0
SR O 2
O




How can the Hider minimize his potential loss?

We will use the principle of indifference to compute the value of this game.

Suppose the Hider plays L1 with probability y; and hence R1 with
probabilityl — y;.
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We will use the principle of indifference to compute the value of this game.
Suppose the Hider plays L1 with probability y; and hence R1 with
probabilityl — y;.

Then the Hider is trying to minimize max{(y1 - 1,(1 — y1) - 2}. To achieve
the minimum value, we must have

yi-1=(1-y1)-2
so that y; = % and Hider's loss (i.e. the value V of the game) is %

Then by the minimax theorem, the Chooser can always guarantee a gain of
V = % by an approriate mixed strategy.

The Chooser's mixed strategy is also (L,R) = (2, 1).

10



The (simplified) soccer penalty kick game

FIGURE 4. The game of Penalty Kicks.

In soccer, a player taking a penalty shot generally tries for the right or left
hand side of the net. Given the size of the goal, the goalie has to make a
decision whether to leap left or right in order to have a chance of stopping

a kick.
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The (simplified) soccer penalty kick game continued

In the introductory chapter, the KP text provides a matrix (for data
collected by Palacios-Huerta) representing the success probabilty of scoring
on a penalty kick based on 1417 penalty kicks in European professional
games. Here ‘R’ represents the dominant side (i.e. right-footed or
left-footed) of the kicker (which is known to the goalie).

goalie

L R
. [L058 0095
2[R [093 0.70
—

Figure : Matrix for probability of scoring based on data collected from
professional games
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The (simplified) soccer penalty kick game continued

Given these probabilities, the minimax strategy for the kicker is to kick to
the dominant side R with probability p = .62 and the goalie's minimax
strategy is to leap to the dominant side R with probability g = .58.
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The (simplified) soccer penalty kick game continued

Given these probabilities, the minimax strategy for the kicker is to kick to
the dominant side R with probability p = .62 and the goalie's minimax
strategy is to leap to the dominant side R with probability g = .58.

You should verify these probabilities and compute the value of the game

Palacios-Huerta reports that the actual strategy fractions were p’ = .60
and ¢’ = .577. This provides some evidence that the players (as a
community) have learned to use minimax strategies.
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The easy direction of the minimax theorem

An equality A = B is equivalent to the two inequalities, A < B and B < A.
The easy direction of the minimax theorem

g T g T
maXXEAm mlnyEAn X Ay S mlnyEAn maXXEAm X Ay

Proof: We are only considering the case of finitely many strategies so the
proof in Lemma 2.5.3 suffices since X = A, and Y = A, are closed and
bounded sets and f(x,y) = x Ay is a continuous function guaranteeing
the existence of the max and min.

Consider any (x’,y’) such that x" (resp. y’) is in the support X of the row
(resp. column) player’s distribution Y).

minf(x',y) < fx,y') < maxf(x Y)
yey xeX

Since this holds for arbitrary x/,

f < max f
max min (x',y) < maxf(x,y')

And then minimizing over y € Y, the desired inequality is obtained.



The other direction of the minimax theorem

The harder direction of the minimax theorem is derived in the KP text
using a result called the separating hyperplane theorem.

The separating hyperplane theorem

Consider a region K in RY that is closed (i.e. contains all of its limit
points) and convex (i.e. any point on the line between two points in K is
also in K).

Thenif0¢ K,3zc R, ccR:0<c<z'vforallveK.

That is, the hyperplane {x € R? : z"x = c} separates K from 0.

Figure : lllustration (figure 2.4) of separating hyperplane for d =2 .



The separating hyperplane theorem in machine
learning

The separating hyperplane theorem is the basis for a binary classification
method in machine learning called support vector machines.
CSC 2545 - Kernel Methods and Support Vector Machines

The idea is that vectors represent various feature values of examples that
need to be classified as being “good examples” (e.g. movies we like) or
“bad examples” (movies we don't like). Given a training set, we compute
this hyperplane (ignoring misclassified points and how to use kernal maps
so as to apply the method in general). So if K are the good examples, the
support vector is the vector that determines the separating hyperplane
that will be used to classify new points.

Furthermore the more positive (resp. negative) z' v, the more confidant
(or the better the evidence) that the example represented by v is a good
(resp. bad) example.
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Sketch of the harder direction of the minimax
theorem: see Theorem 2.5.4 in KP text

We will assume the separating hyperplane theorem.
Suppose by way of contradiction that

max min x’ Ay < A < min max x' Ay
xXEAm yEA, YEAL XEAR

for some .

By defining a new game with 3;; = a;; — A, we have reduced the payoff in
each entry of the matrix by A and hence the expected payoff of every
mixed strategy (for the new game) is also reduced by A. Therefore

max min x' Ay < 0 < min max x' Ay
XEAM, yeAn yEAn xEAm,
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Sketch of harder direction continued

To establish the contradiction, one shows that

O Theset K = {Z\y + v,y € Ap,, v > 0 satisfies the conditions of the
separating hyperplane theorem. That is,
» K is convex and closed
» 0¢ K
@ Therefore 3z and ¢ such that 0 < ¢ < 2z (Ay + v)
© Furthermore z> 0 and z # 0.

© The mixed strategy X' = z/ > z gives a positive expected gain
against any mixed strategy y establishing the contradiction.
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Two important computational applications of the
minimax theorem

We will discuss two important applications of the minimax theorem.

@ The first application is actually an equivalent result, namely the (LP)
duality theorem of linear programming (LP). Linear programming is
one of the most important concepts in combinatorial optimization
(leading to efficient optimal and approximation algorithms) and LP
duality is arguably the central theorem of linear programmming. Since
LPs can be solved optimally in polynomial time, this will imply that
(unlike general-sum NEs), we can always solve zero-sum games (i.e.
find the mixed strategies that yield the value of the game).

© The second application is The Yao Principle which is a direct
consequence of the minimax theorem and is a basic tool in proving
“negative” results for randomized algorithms.
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Integer programming, linear programming and LP
duality

An integer program (IP) (resp. LP) formulates an optimization problem as
the maximization or minimization of a linear function of integral (resp.
real) variables subject to a set of linear inequalities and equalities.

Most combinatorial optimization have reasonably natural IP (and
sometimes LP) formulations. But solving an IP is an NP complete problem
so that one does not in general expect efficient algorithms for optimally
solving IPs. However, many IPs are solved “in practice” by IPs and there
are classes of IPs that do have worst case efficient algorithms.

Another important idea in approximately solving IPs is to relax the integral
constraints to real valued constraints (e.g. x; € {0,1} is relaxed to

x; € [0,1]) and then "rounding” the fractional solution to an integral
solution.

Note: if the objective function and all constraints have rational
coefficients, then we can assume rational solutions for an LP.



