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Lecture 4

Announcements

I Tutorial this Friday in SS 1086
I First 3 questions for assignment 1 have been posted.
I Talk of possible interetst: This coming Tuesday, September 20, there

will be a seminar “Preferences and Manipulative Actions in Elections”
by Gabor Erdelyi. The talk will take place in Pratt 266 at 11AM.

I Another talk of possible interest: Thursday, September 29, there will
be a seminar “When Should an Expert Make a Prediction?” by Amir
Ban. The talk will take place in the first floor conference room of the
Fields Institute, 222 College Street. The time will either be at noon or
at 1PM.

Today’s agenda

I Briefly discuss some terminology
I Zero-sum games; Read chapter 2 (excluding section 2.6) and section

3.2 (Hide and Seek Games)
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Some terminology

In lecture 2, we mentioned the concept of a dominant strategy. I have
clarified that discussion. Here is how that now reads:

A (weakly) dominant strategy D for a player P is one in which P will
achieve the maximize payoff possible for any given strategy profile of
the other players. (Usually one assumes that D is better for P for at
least one strategy profile of the other players. If two strategies have
the same value for all strategy profiles of the other players, then we
do not have to distinguish these two strategies.)

A strictly dominant strategy is one that yields a better value for all
strategy profiles of the other players.

Unless otherwise stated, dominate strategy will mean weakly
dominant and we will assume that there do not exist two strategies
for a player that have the same value for all strategy profiles of the
other players.
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Terminology continued

In the critique of Nash equilibria, I mentioned that so far we have only
been discussing “full information games”. That terminology is not
standard. I am now changing that to the following terminology that is
consistent with the text and reasonably well (although perhaps not
universally) accepted:

There are two distinctions to be made, games of perfect vs imperfect
information and complete vs incomplete information. The discussion
thus far has been restricted to games of perfect and complete
information where we know everyones strategies and precise values for
all strategy profiles. When we do not know the precise values but
have a probabilistic prior belief about the distributions of the values,
then we have a Bayesian game of perfect but incomplete information.

We return to these distinctions in Chapter 6 (Games in extensive
form).
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Zero-sum games

We now jump back to Chapters 2 and 3 (but only section 3.2) in the KP
text where the topic is zero-sum games which are a restriction of
general-sum games.
In two player general-sum games, each entry of the payoff matrix U[i , j ] is
a pair (ai ,j , bi ,j) where ai ,j (respectively, bi ,j)) is the payoff for the first (i.e.
row) player (resp. the payoff for the second player) when the first player
uses strategy i and the second player uses strategy j .
Note: In the chapters on zero-sum games, strategies are often called
“actions”.

In a zero-sum game, we have ai ,j = −bi ,j for all i , j . That is, what one
player (say the row player) “gains” the other playeer loses. In particular,
we can have two player games where each entry of the matrix is either +1
or -1; that is, when one player wins the game, the other loses and we often
consider “which player has a winning strategy”.

Since ai ,j determines bi ,j , we only need to specify ai ,j so that we will
represent zero-sum games by a real-valued matrix A with A[i , j ] = ai ,j
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Zero-sum games: revisiting some concepts

As in general-sum games, we will again have pure and mixed strategies
and for any choice of player strategies there is a well defined payoff to each
player. We will also always have mixed Nash equilibria (and sometimes
pure equilbria). Zero-sum games are, however, quite special and we will
see that they will possess a special property. Namely,

There is the concept of the value V of the game which is an amount
that one player can guarantee as its minimum expected gain and the
other can guarantee as its maximum expected loss.

Every Nash equlibrium has the same payoff to each player, the payoff
being the value V of the game. Recall that in general-sum games
there can be many NE with different payoffs to the individual players.
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Von Neumann’s Minimax Theorem and the value of
a zero sum game

Let ∆k be the set of probability distributions over a set of k possiibilities.

Suppose player 1 has m possible strategies and player 2 has n possible
strategies. Then (as before) we can represent a mixed strategy by a pair of
vectors (x, y) where x = (x1, . . . , xm) ∈ ∆m with xi being the probability
that player 1 chooses strategy i and similarly y = (y1, . . . , yn) ∈ ∆n with
yj the probability that player 2 chooses strategy j .

Von Neumann’s Minimax Theorem and value V of a game

Let A[aij ] be the payoff matrix for a zero sum game. Then
V = maxx∈∆m miny∈∆n xTAy = miny∈∆n maxx∈∆m xTAy

Lets understand the meaning of this result using a few examples of
zero-sum games; then we will return to discuss the significance of the
result and a sketch of its proof.

7 / 1



A zero-sum game with a pure NE

2.3. SIMPLIFYING AND SOLVING ZERO-SUM GAMES 31

(1) It is easy to check that the left hand side of equation (3) is upper bounded
by the right hand side, i.e.

max
x2�m

min
y2�n

xT Ay  min
y2�n

max
x2�m

xT Ay. (4)

(See the argument for equation 1 and Lemma 2.5.3). The magic of zero-
sum games is that, in mixed strategies, this inequality becomes an equality.

(2) If x⇤ is a safety strategy for player I and y⇤ is a safety strategy for player
II, then it follows from Theorem 2.2.2 that:

min
y2�n

(x⇤)T Ay = V = max
x2�m

xT Ay⇤. (5)

In words, this means: that the mixed strategy x⇤ yields player I an ex-
pected gain of at least V , no matter how II plays, and the mixed strategy
y⇤ yields player II an expected loss of at most V , no matter how I plays.
Therefore, from now on, we will refer to the safety strategies in zero-sum
games as optimal strategies.

2.3. Simplifying and solving zero-sum games

In this section, we will discuss techniques that help us understand zero-sum
games and solve them (that is, find their value and determine optimal strategies
for the two players).

2.3.1. Pure optimal strategies: saddle points. Given a zero-sum game,
the first thing to check is whether or not there is a pair of optimal strategies that
is pure.

For example, in the following game, by playing action 1, player I guarantees
himself a payo↵ at least 2 (since that is the smallest entry in the row). Similarly, by
playing action 1, player II guarantees himself a loss of at most 2. Thus, the value
of the game is 2.

player II
action 1 action 2

p
la

ye
r

I action 1 2 3
action 2 1 0

Definition 2.3.1. A 2 of a payo↵ matrix A is a pair (i⇤, j⇤) such that

max
i

aij⇤ = ai⇤j⇤ = min
j

ai⇤j (6)

If (i⇤, j⇤) is a saddle point, then ai⇤j⇤ is the value of the game. A saddle point
is also called a pure Nash equilibrium: given the action pair (i⇤, j⇤), neither
player has an incentive to deviate. See §2.4 for a more detailed discussion of Nash
equilibria.

2The term saddle point comes from the continuous setting where a function f(x, y) of two
variables has a point (x⇤, y⇤) at which locally maxx f(x, y⇤) = f(x⇤, y⇤) = miny f(x⇤, y) . Thus,

the surface resembles a saddle that curves up the the y direction and curves down in the x direction.

Figure : Example in section 2.3.1 in KP text

In this game, the pair (action 1,action 1) is a pure NE (also called a saddle
point in definition 2.3.1 of KP text). The value of this game is 2. That is,
no matter what player II does, player one is guaranteed a gain of at least
2, and no matter what player I does, player II can lose at most 2.
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Pick a hand: an example of a zero sum game with
no pure NE

CHAPTER 2

Two-person zero-sum games

We begin with the theory of two-person zero-sum games, developed in a
seminal paper by John von Neumann and Oskar Morgenstern. In these games, one
player’s loss is the other player’s gain. The central theorem for two-person zero-
sum games is that even if each player’s strategy is known to the other, there is an
amount that one player can guarantee as her expected gain, and the other, as his
maximum expected loss. This amount is known as the value of the game.

2.1. Examples

Figure 2.1. Two people playing Pick a Hand.

Consider the following game:

Example 2.1.1 (Pick-a-Hand, a betting game). There are two players,
Chooser (player I), and Hider (player II). Hider has two gold coins in his back
pocket. At the beginning of a turn, he1 puts his hands behind his back and either

1In all two-person games, we adopt the convention that player I is female and player II is
male.

27

Figure : The “pick a hand” game; figure 2.1 in KP text

28 2. TWO-PERSON ZERO-SUM GAMES

takes out one coin and holds it in his left hand (strategy L1), or takes out both
and holds them in his right hand (strategy R2). Chooser picks a hand and wins
any coins the hider has hidden there. She may get nothing (if the hand is empty),
or she might win one coin, or two. How much should Chooser be willing to pay in
order to play this game?

The following matrix summarizes the payo↵s to Chooser in each of the cases.

Hider
L1 R2

C
h
o
os

er

L 1 0
R 0 2

How should Hider and Chooser play? Imagine that they are conservative and
want to optimize for the worst case scenario. Hider can guarantee himself a loss of
at most 1 by selecting action L1, whereas if he selects R2, he has the potential to
lose 2. Chooser cannot guarantee herself any positive gain since, if she selects L, in
the worst case, Hider selects R2, whereas if she selects R, in the worst case, Hider
selects L1.

Now consider expanding the possibilities available to the players by incorpo-
rating randomness. Suppose that Hider selects L1 with probability y1 and R2 with
probability y2 = 1�y1. Hider’s expected loss is y1 if Chooser plays L, and 2(1�y1)
if Chooser plays R. Thus Hider’s worst-case expected loss is max(y1, 2(1 � y1)).
To minimize this, Hider will choose y1 = 2/3. Thus, no matter how Chooser
plays, Hider can guarantee himself an expected loss of at most 2/3. See
Figure 2.2.

Expected
 gain

of Chooser

Worst-case gain 

1

2

2/30

Chooser’s choice of 

 : when Hider 
     plays L1

         : when Hider
             plays R2

 Expected
loss

of Hider Worst-case 
     loss 

Hider’s choice of

 : when Chooser 
plays L

         : when Chooser 
             plays R

1

2

2/30

Figure 2.2. The left side of the figure shows the worst-case expected
gain of Chooser as a function of x1, the probability with which she
plays L. The right side of the figure shows the worst-case expected loss
of Hider as a function of y1, the probability with which he plays L1. (In
this example, the two graphs “look” the same because the payo↵ matrix
is symmetric. See Example 2.1.2 for a game where the two graphs are

di↵erent.)

Figure : Matrix for “pick a hand” in KP text. The payoff (for the kicker) is
defined to be these probabilities of scoring.

9 / 1



How can the Hider minimize his potential loss?

We will use the principle of indifference to compute the value of this game.
Suppose the Hider plays L1 with probability y1 and hence R1 with
probability1− y1.

Then the Hider is trying to minimize max{(y1 · 1, (1− y1) · 2}. To achieve
the minimum value, we must have

y1 · 1 = (1− y1) · 2

so that y1 = 2
3 and Hider’s loss (i.e. the value V of the game) is 2

3 .

Then by the minimax theorem, the Chooser can always guarantee a gain of
V = 2

3 by an approriate mixed strategy.

The Chooser’s mixed strategy is also (L,R) = ( 2
3 ,

1
3 ).
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The (simplified) soccer penalty kick gameAN OVERVIEW OF THE BOOK 3

for all i, j, are called zero-sum games. Such games are the topic of Chapter 2.
We show that every zero-sum game has a value v such that player I can ensure her
expected payo↵ is at least v (no matter how II plays) and player II can ensure he
pays I at most v (in expectation) no matter how I plays.

For example, in Penalty Kicks, a zero-sum game inspired by soccer, one
player, the kicker, chooses to kick the ball either to the left or to the right of the
other player, the goalie. At the same instant as the kick, the goalie guesses whether
to dive left or right.

Figure 4. The game of Penalty Kicks.

The goalie has a chance of saving the goal if he dives in the same direction as the
kick. The kicker, who we assume is right-footed, has a greater likelihood of success
if she kicks right. The probabilities that the penalty kick scores are displayed in
the table below:

goalie
L R

k
ic

ke
r L 0.5 1

R 1 0.8

For this set of scoring probabilities, the optimal strategy for the kicker is to kick left
with probability 2/7 and kick right with probability 5/7 — then regardless of what
the goalie does, the probability of scoring is 6/7. Similarly, the optimal strategy for
the goalie is to dive left with probability 2/7 and dive right with probability 5/7.

Chapter 3 goes on to analyze a number of interesting zero-sum games on
graphs. For example, we consider a game between a Troll and a Traveler. Each
of them chooses a route (a sequence of roads) from Syracuse to Troy and then they
simultaneously disclose their routes. Each road has an associated toll. For each
road chosen by both players, the traveler pays the toll to the troll. We find optimal
strategies by developing a connection with electrical networks.

In Chapter 4 we turn to general-sum games. In these games, players
no longer have optimal strategies. Instead, we focus on situations where each
player’s strategy is a best response to the strategies of the opponents: a Nash
equilibrium is an assignment of (possibly randomized) strategies to the players,

In soccer, a player taking a penalty shot generally tries for the right or left
hand side of the net. Given the size of the goal, the goalie has to make a
decision whether to leap left or right in order to have a chance of stopping
a kick.
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The (simplified) soccer penalty kick game continued

In the introductory chapter, the KP text provides a matrix (for data
collected by Palacios-Huerta) representing the success probabilty of scoring
on a penalty kick based on 1417 penalty kicks in European professional
games. Here ‘R’ represents the dominant side (i.e. right-footed or
left-footed) of the kicker (which is known to the goalie).

10 PREFACE

goalie
L R

k
ic

k
er

L 0.58 0.95
R 0.93 0.70

Here ‘R’ represents the dominant (natural) side for the kicker. Given these probabilities,
the optimal strategy for the kicker is (0.38, 0.62) and the optimal strategy for the goalie
is (0.42, 0.58). The observed frequencies were (0.40, 0.60) for the kicker and (0.423, 0.577)
for the goalie.

The early history of the theory of strategic games from Waldegrave to Borel is dis-
cussed in [DD92].

Figure : Matrix for probability of scoring based on data collected from
professional games
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The (simplified) soccer penalty kick game continued

Given these probabilities, the minimax strategy for the kicker is to kick to
the dominant side R with probability p = .62 and the goalie’s minimax
strategy is to leap to the dominant side R with probability q = .58.

You should verify these probabilities and compute the value of the game

Palacios-Huerta reports that the actual strategy fractions were p′ = .60
and q′ = .577. This provides some evidence that the players (as a
community) have learned to use minimax strategies.
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The easy direction of the minimax theorem

An equality A = B is equivalent to the two inequalities, A ≤ B and B ≤ A.

The easy direction of the minimax theorem

maxx∈∆m miny∈∆n xTAy ≤ miny∈∆n maxx∈∆m xTAy

Proof: We are only considering the case of finitely many strategies so the
proof in Lemma 2.5.3 suffices since X = ∆m and Y = ∆n are closed and
bounded sets and f (x, y) = xTAy is a continuous function guaranteeing
the existence of the max and min.
Consider any (x′, y′) such that x′ (resp. y′) is in the support X of the row
(resp. column) player’s distribution Y ).

min
y∈Y

f (x′, y) ≤ f x′, y′) ≤ max
x∈X

f (x, y′)

Since this holds for arbitrary x′,

max
x′∈X

min
y∈Y

f (x′, y) ≤ max
x∈X

f (x, y′)

And then minimizing over y ∈ Y , the desired inequality is obtained.
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The other direction of the minimax theorem

The harder direction of the minimax theorem is derived in the KP text
using a result called the separating hyperplane theorem.

The separating hyperplane theorem

Consider a region K in Rd that is closed (i.e. contains all of its limit
points) and convex (i.e. any point on the line between two points in K is
also in K ).
Then if 0 /∈ K ,∃z ∈ Rd , c ∈ R : 0 < c < zTv for all v ∈ K .
That is, the hyperplane {x ∈ Rd : zTx = c} separates K from 0.

46 2. TWO-PERSON ZERO-SUM GAMES

Recall first that the (Euclidean) norm of a vector v is the (Euclidean)

distance between 0 and v, and is denoted by kvk. Thus kvk =
p

vT v. A subset
of a metric space is closed if it contains all its limit points, and bounded if it is
contained inside a ball of some finite radius R.

Definition 2.5.1. A set K ✓ Rd is convex if, for any two points a,b 2 K,
also lies in K. In other words, for every pair of points a,b 2 K,

{pa + (1 � p)b : p 2 [0, 1]} 2 K,

Theorem 2.5.2 (The Separating Hyperplane Theorem). Suppose that
K ✓ Rd is closed and convex. If 0 /2 K, then there exists z 2 Rd and c 2 R such
that

0 < c < zT v

for all v 2 K.

Here 0 denotes the vector of all 0’s. The theorem says that there is a hyper-
plane (a line in two dimensions, a plane in three dimensions, or, more generally,
an a�ne Rd�1-subspace in Rd) that separates 0 from K. In particular, on any
continuous path from 0 to K, there is some point that lies on this hyperplane. The
separating hyperplane is given by

�
x 2 Rd : zT x = c

 
. The point 0 lies in the

half-space
�
x 2 Rd : zT x < c

 
, while the convex body K lies in the complementary

half-space
�
x 2 Rd : zT x > c

 
.

0

K

line

Figure 2.4. Hyperplane separating the closed convex body K from 0.

In what follows, the metric is the Euclidean metric.

Proof of Theorem 2.5.2. Choose r so that the ball Br = {x 2 Rd : kxk 
r} intersects K. Then the function w 7! kwk, considered as a map from K \ Br

to [0,1), is continuous, with a domain that is nonempty, closed and bounded (see
Figure 2.5). Thus the map attains its infimum at some point z in K. For this
z 2 K, we have

kzk = inf
w2K

kwk.

Figure : Illustration (figure 2.4) of separating hyperplane for d = 2
15 / 1



The separating hyperplane theorem in machine
learning

The separating hyperplane theorem is the basis for a binary classification
method in machine learning called support vector machines.
CSC 2545 - Kernel Methods and Support Vector Machines

The idea is that vectors represent various feature values of examples that
need to be classified as being “good examples” (e.g. movies we like) or
“bad examples” (movies we don’t like). Given a training set, we compute
this hyperplane (ignoring misclassified points and how to use kernal maps
so as to apply the method in general). So if K are the good examples, the
support vector is the vector that determines the separating hyperplane
that will be used to classify new points.

Furthermore the more positive (resp. negative) zTv, the more confidant
(or the better the evidence) that the example represented by v is a good
(resp. bad) example.
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Sketch of the harder direction of the minimax
theorem: see Theorem 2.5.4 in KP text

We will assume the separating hyperplane theorem.
Suppose by way of contradiction that

max
x∈∆m

min
y∈∆n

xTAy < λ < min
y∈∆n

max
x∈∆m

xTAy

for some λ.

By defining a new game with ãij = aij − λ, we have reduced the payoff in
each entry of the matrix by λ and hence the expected payoff of every
mixed strategy (for the new game) is also reduced by λ. Therefore

max
x∈∆m

min
y∈∆n

xT Ãy < 0 < min
y∈∆n

max
x∈∆m

xT Ãy
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Sketch of harder direction continued

To establish the contradiction, one shows that

1 The set K = {Ãy + v, y ∈ ∆n, v ≥ 0 satisfies the conditions of the
separating hyperplane theorem. That is,

I K is convex and closed
I 0 /∈ K

2 Therefore ∃z and c such that 0 < c < zT (Ãy + v)

3 Furthermore z ≥ 0 and z 6= 0.

4 The mixed strategy x′ = z/
∑

zi gives a positive expected gain
against any mixed strategy y establishing the contradiction.
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Two important computational applications of the
minimax theorem

We will discuss two important applications of the minimax theorem.

1 The first application is actually an equivalent result, namely the (LP)
duality theorem of linear programming (LP). Linear programming is
one of the most important concepts in combinatorial optimization
(leading to efficient optimal and approximation algorithms) and LP
duality is arguably the central theorem of linear programmming. Since
LPs can be solved optimally in polynomial time, this will imply that
(unlike general-sum NEs), we can always solve zero-sum games (i.e.
find the mixed strategies that yield the value of the game).

2 The second application is The Yao Principle which is a direct
consequence of the minimax theorem and is a basic tool in proving
“negative” results for randomized algorithms.
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Integer programming, linear programming and LP
duality

An integer program (IP) (resp. LP) formulates an optimization problem as
the maximization or minimization of a linear function of integral (resp.
real) variables subject to a set of linear inequalities and equalities.

Most combinatorial optimization have reasonably natural IP (and
sometimes LP) formulations. But solving an IP is an NP complete problem
so that one does not in general expect efficient algorithms for optimally
solving IPs. However, many IPs are solved “in practice” by IPs and there
are classes of IPs that do have worst case efficient algorithms.

Another important idea in approximately solving IPs is to relax the integral
constraints to real valued constraints (e.g. xi ∈ {0, 1} is relaxed to
xi ∈ [0, 1]) and then “rounding” the fractional solution to an integral
solution.
Note: if the objective function and all constraints have rational
coefficients, then we can assume rational solutions for an LP.
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