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Lecture 3

Announcements

The start of Assignment 1 has been posted. Note that this includes
(question 3c) the use of an LP solver to compute the value of a
zero-sum game as defined in questions 3a and 3b.

Talk of possible interetst: This coming Tuesday, September 20,
there will be a seminar “Preferences and Manipulative Actions in
Elections” by Gabor Erdelyi. The talk will take place in Pratt 266 at
11AM.
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Agenda for today

We ended the second class stating the “principle of indifference “ for a two
person game and gave one example showing how to find a mixed NE for
the stag-hare game.

We begin today with a few more simple 2 by 2 two person examples;
namely,

1 The cheetah-antelope game
2 The driver-inspector game (that we mentioned last class)
3 The prisoner’s dilemma

Next we consider the “tragedy of the commons”, a many player game
where each player has an infinite number of strategies.

We conclude with a brief critique of Nash equilibria
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The cheetah and antelope game

In the chettah and anteople game, two cheetahs are both chasing a large
and small antelope. Similar to the stag and hare game (where a stag is
worth more than a hare), the large antelope is worth more than the small
antelope. But unlike the stag and hare game, a cheetah can catch any
anteope on its own but if both cheetahs go for the same antelope they
must share the value. This is a symmetric game where each cheetah has
two strategies, L (catch the large antelope) and S (catch the small
antelop).

Let ` (resp. s) be the payoff of the large (resp. small) antelope where
obviously we can assume s ≤ `. When ` ≥ 2s, strategy L is a dominant
strategy for both cheetahs. When s ≤ ` < 2s (the text does not consider
s = `), (S , L) and (L, S) are pure NE. But (as the text says), how would
they agree on who gets which antelope?
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The symmetric mixed strategy for the cheetah and
antelope game

Using the principle of indifference and letting x1 being the probability of of
a cheetah choosing the “greedy strategy” L we have :

`

2
x1 + (1− x1)` = s · x1 + (1− x1)

s

2

which implies that for the symmetric mixed NE, x1 = 2`−s
`+s . For example,

when ` = 4
3 and s = 1, x1 = 5

7 .

Interestingly, the text points out that if we think of a cheetah playing this
game reperatedly against a random cheetah, one can argue why the
cheetah population would evolve to the mixed NE strategy.
Think about who has an advantage when the cheetah plays more or less
greedily. The claim is that such mixed NE have been observed in real
evolutionary biological populations.
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The game of “chicken”

While it may seem like we are obsessed with animals, this game is about
human behaviour. The game of “chicken” is depicted in two rather iconic
moves, “Rebel without a cause” and “Footloose”. What happens when
two drivers (men in both movies trying to prove something) are driving in
opposite directions in a single lane? Disaster (i.e. some large negative
payoff M) is incurred if neither “chickens out” whereas if only one
chickens out, he only suffers a minor humiliation (say payoff = -1) while
the other gains approval (say payoff = 2) for his macho performance.

80 4. GENERAL-SUM GAMES

non-greedy bettergreedy better

15
7

chasing large antelope, i.e. greedy behavior

behavior of non-greedy

behavior of greedy

Figure 4.4. A graph illustrating how the population is pushed by evo-
lution towards the symmetric Nash equilibrium.

Example 4.2.3 (Chicken). Two drivers speed head-on toward each other and
a collision is bound to occur unless one of them chickens out and swerves at the last
minute. If both swerve, everything is OK (in this case, they both get a payo↵ of 1).
If one chickens out and swerves, but the other does not, then it is a great success
for the player with iron nerves (yielding her a payo↵ of 2) and a great disgrace for
the chicken (a penalty of 1). If both players have iron nerves, disaster strikes (and
both incur a large penalty M).

player II
Swerve (S) Drive (D)

p
la

ye
r

I

Swerve (S) (1, 1) (�1, 2)
Drive (D) (2, �1) (�M , �M)

There are two pure Nash equilibria in this game, (S, D) and (D, S): if one
player knows with certainty that the other will drive on (respectively, swerve), that
player is better o↵ swerving (respectively, driving on).

To determine the mixed equilibria, suppose that player I plays S with probabil-
ity x and D with probability 1�x. This presents player II with expected payo↵s of
x+(1�x) · (�1), i.e., 2x�1 if he plays S, and 2x+(1�x) · (�M) = (M +2)x�M
if he plays D. We seek an equilibrium where player II has positive probability on
each of S and D. Thus,

2x � 1 = (M + 2)x � M i.e., x = 1 � 1

M

The resulting payo↵ for player II is 2x � 1 = 1 � 2/M .

Figure: The chicken game matrix in KP
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Observations about the chicken game

There are two pure NE, namely (S,D) and (D,S). But (like the
cheetah and antelope game), who is going to swerve (chicken out)
and who is going to drive?

The mixed NE (not surprisingly) depends on the value of M. Using
the principle of indifference, the symmetric mixed strategy is for each
driver to swerve with probability x = 1− 1

M so that the expected
payoff for each driver is 1− 2

M .

Perhaps surprisingly, as the text notes, even though the ”matrix is
decreasing in value” as M increases,, the equilibrium payoff for each
player is increasing. The payoff is lower than the payoff to the
“winner” in the pure NE. ‘

Perhaps surprisingly, as M increases it is limiting to (S,S) which is not
a Nash equilibrium.

Finally, as the text notes, there is a great benefit to the first driver
who sends a binding commitment (tearing out the steering wheel)
that he will not swerve.

7 / 1



The mixed strategy for the driver and parking
inspector game

We observed last time that the driver and inspector game did not possess
a pure NE. But from Nash’s theorem, we know it has a mixed NE.

4.1. SOME EXAMPLES 77

What are good strategies for the hunters? We begin by considering safety
strategies.1 For each player, H is the unique safety strategy and yields a payo↵ of
1. The strategy pair (H, H) is also a pure Nash equilibrium, since given the choice
by the other hunter to pursue a hare, a hunter has no incentive to continue tracking
the stag. There is another pure Nash equilibrium, (S, S), which yields both players
a payo↵ of 4. Finally, there is a mixed Nash equilibrium, in which each player
selects S with probability 1/3. This results in an expected payo↵ of 4/3 to each
player.

This example illustrates a phenomenon that doesn’t arise in zero-sum games:
a multiplicity of equilibria with di↵erent expected payo↵s to the players.

Example 4.1.3 (War and Peace). Two countries in conflict have to decide
between diplomacy and military action. One possible payo↵ matrix is:

Firm II
diplomacy attack

F
ir

m
I diplomacy (2, 2) (-2, 0)

attack (0, -2) (-1, -1)

Like Stag Hunt, this game has two pure Nash equilibria, where one arises from
safety strategies, and the other yields higher payo↵s. In fact, this payo↵ matrix is
the Stag Hunt matrix, with all payo↵s reduced by 2.

Example 4.1.4 (Driver and Parking Inspector). Player I is choosing be-
tween parking in a convenient but illegal parking spot (payo↵ 10 if she’s not caught),
and parking in a legal but inconvenient spot (payo↵ 0). If she parks illegally and is
caught, she will pay a hefty fine (payo↵ -90). Player II, the inspector representing
the city, needs to decide whether to check for illegal parking. There is a small cost
(payo↵ -1) to inspecting. However, there is a greater cost to the city if player I
has parked illegally since that can disrupt tra�c (payo↵ -10). This cost is partially
mitigated if the inspector catches the o↵ender (payo↵ -6).

The resulting payo↵ matrix is the following:

Inspector
Don’t Inspect Inspect

D
ri

ve
r Legal (0, 0) (0, -1)

Illegal (10, -10) (-90, -6)

In this game, the safety strategy for the driver is to park legally (guaranteeing
her a payo↵ of 0), and the safety strategy for the inspector is to inspect (guarantee-
ing him/the city a payo↵ of -6). However, the strategy pair (legal, inspect) is not
a Nash equilibrium. Indeed, knowing the driver is parking legally, the inspector’s
best response is not to inspect. It is easy to check that this game has no Nash
equilibrium in which either player uses a pure strategy.

There is, however, a mixed Nash equilibrium. Suppose the strategy pair (x, 1�
x) for the driver and (y, 1�y) for the inspector are a Nash equilibrium. If 0 < y < 1,
then both possible actions of the inspector must yield him the same payo↵. If, for

1 A safety strategy for player I is defined as in Definition 2.2.1. For player II the same

definition applies with the payo↵ matrix B replacing A.

Figure: Driver and parking inspector game; Example 4.1.4 in KP
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Driver-inspector mixed strategy

To find a mixed NE, lets say that the driver plays the strategy (x1, x2) and
the inspector playes strategy (y1, y2)

Note: In question 2a of the assignment, we ask for a proof that in any 2
by 2 two person game that does not have a dominant strategy, any NE is
either pure or fully mixed.

From the principle of indifference:

We must have that the expected payoff to the inspector is the same
whether he inspects or doesn’t inspect. That is,

0 · x1 + (−10) · (1− x1) = (−1) · x1 + (−6)(1− x1)

which implies x1 = .8.
Similarly, 0 = 10 · y1 + (−90)(1− y1) so that y1 = .9.

Note: I claim that for a 2 by 2 two person game we do not have to verify
that a mixed strategy computed by the principle of indifference is a mixed
NE. Why? But in general, one does have to verify whether or not any
proposed mixed is an NE.
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The prisoners dilemma

One of the classic examples in game theory is the well-known prisoners
dilemma game. There can be many instances of this game

The Prisoner’s Dilemma narrative: page 67 of KP text)

Two prisoners are suspected of and are being interogated for a serious
crime. But they need a confession in order to convict. If they get a single
confession and use that to convict the other prisoner, they set free the
person who confesses and the convicted prisoner will serve serious time. If
they both confess, there is a reduced sentence and if neither confess, the
police have to settle for conviction of a minor crime.
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Cartoon from Smbc-comics.com: family in a
prisoners dilemma
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Another prisoners dilemma cartoon

CHAPTER 4

General-sum games

We now turn to the theory of general-sum games. Such a game is specified
by two matrices A = (aij) and B = (bij). If player I chooses action i and player II
chooses action j, their payo↵s are aij and bij respectively. In contrast to zero-sum
games, there is no reasonable definition of “optimal strategies”. Safety strategies
still exist, but they no longer correspond to equilibria. The most important notion
is that of a Nash equilibrium, i.e., a pair of strategies, one per player, such that
each is a best-response to the other. general-sum games and the notion of Nash
equilibrium extend naturally to more than two players.

4.1. Some examples

Example 4.1.1 (Prisoner’s Dilemma). Two suspects are imprisoned by the
police who ask each of them to confess. The charge is serious, but the police don’t
have enough evidence to convict. Separately, each prisoner is o↵ered the following
plea deal. If he confesses and the other prisoner remains silent, the confessor goes
free, and his confession is used to sentence the other prisoner to ten years in prison.
If both confess, they will both spend eight years in prison. If both remain silent,
the sentence is one year to each for the minor crime that can be proved without
additional evidence. The following matrix summarizes the payo↵s, where negative

Figure 4.1. Two prisoners considering whether to confess or remain silent.

numbers represent years in prison.

67Figure: A cartoon for the prisoners dilemma; Figure 4.1 in KP text. Note that
the prisoners cannot communicate and must decide what to do individually

Once we indicate the actual jail times, we can again use a matrix to
precisely define the game.

12 / 1



A prisoners dilemma matrix

68 4. GENERAL-SUM GAMES

prisoner II
silent confess

p
ri

so
n
er

I

silent (�1,�1) (�10, 0)
confess (0,�10) (�8,�8)

In this game, the prisoners are better o↵ if both of them remain silent than they are
if both of them confess. However, the two prisoners select their actions separately,
and for each possible action of one prisoner, the other is better o↵ confessing, i.e.,
confessing is a dominant strategy.

The same phenomenon occurs even if the players were to play this same game
a fixed number of times. This can be shown by a backwards induction argument.
However, as we shall see in §6.4, if the game is played repeatedly, but payo↵s are
averaged, or play ends at a random time, the mutually preferable solution may arise
even with selfish play.

Example 4.1.2 (Stag Hunt). Two hunters are following a stag when a hare
runs by. Each hunter has to make a split second decision: to chase the hare or to
continue tracking the stag. The hunters must cooperate to catch the stag, but each
hunter can catch the hare on his own. (If they both go for the hare, they share it.)
A stag is worth four times as much as a hare. This leads to the following payo↵
matrix:

Hunter II
stag (S) hare (H)

H
u
n
te

r
I stag (S) (4, 4) (0, 2)

hare (H) (2, 0) (1, 1)

Figure 4.2. Stag Hunt

Figure: The prisoners dilemma matrix from KP text. Following the KP text,
negative numbers represent the sentence in years. The goal of a prisoner is to
maximize their payoff = minimize their prison time. Equivalently, one can use
positive costs and then the prisoner’s goal is to minimize their cost.
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Observations about the prisoners dilemma game

This is a symmetric game; we cold define a non symmetric game
where say one prisoner (with a bigger criminal record) receives a
harsher sentence.

Confessing is a (strongly) dominant strategy (for each prisoner).

It follows that (confess,confess) is (the only) Nash equilibrium Why?

But clearly (wrt to the prisonsers) the “social welfare” optimum is
(silent,silent).

Of course achieving optimality here (and in general) usually requires
coordination (either amogst the players or orchestrated by a central
authority as we will see in mechansim design). It may not be possible
to achieve optimality in a Nash equilibirum.

A weaker (but still useful) solution concept is Pareto optimality. A
solution is Pareto optimal if there is no other solution for which at
least one player has higher payoff and no other player has a lower
payoff. The pairs (confess,silent)) and (silent,confess) are both Pareto
optimal.
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The tragedy of the commons

There are (unfortunately) many situations where selfish behaviour can lead
to bad outcomes for all players (and then clearly also for the social
welfare). One tragedy of the commons example is given in Example 4.5.1
of KP attributed to Example 1.4 in the Roughgarden et al AGT text.

A tragedy of the commons narrative

A shared unit capacity communication channel is being shared by n players
each wanting to send information along the channel. Each player i can
send xi ∈ [0, 1] units of flow as long as the capacity is not exceeded.
Because of the impact of congestion, the defined utility for i when sending
i units of flow is xi (1−∑

j 6=i xj). There is no utility to any player if the
capacity is exceeded.

Note that this is a game where each agent has a continuously infinite
choice of strategies.
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So what is the tragedy?

The best response for each player i to players j 6= i is to choose
xi = (1−∑

j 6=i xj)/2 resulting in the equilibrium xi = 1
n+1 and hence

utility 1
(n+1)2

for all i with social welfare n
(n+1)2

.

On the other hand each player could have decided to choose xi = 1
2n

resulting in 1
2 unused capacity and a non-equilibrium solution.

However, each player’s utility is now 1
4n and the social welfare is 1

4 .

Computer scientists like to refer to this loss of social welfare as the
price of anarchy POA which is defined as the worst case ratio between
an optimal solution and an equilibrium solution. In this example, we

have seen that the POA is at least 1/4
n

(n+1)2
= (n+1)2

4n ≈ n
4 .

The price of anarchy for our prisoners dilemma game was −16−2 = 8.
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Some (for now) concluding comments on
general-sum games; the importance and limitations
of Nash equilibria

We have been assuming a full information game; that is, all players know
the payoff matrix. We are also assuming players are strategic and that
their only goal is to maximize their individual payoff.

What is the importance of Nash equilibria?
Suppose the game is being played repeatedly. IF we are not in a NE, we
would expect some player to change their strategy so as to improve their
(expected) payoff. So an NE is a more stable solution. In fact, the KP text
states: “we expect the outcome of a game to be a Nash equilibrium”

As stated in the AGT text, ...the notion of a Nash equilibrium, which,
despite its shortcomings ...has emerged as the central concept in game
theory.
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Brief critique of Nash equilibrium

The KP chapter notes and AGT text point out criticisms regarding the
relevance of Nash equilibria. There are many critiques (both positive and
negative) about Nash equlibrium. Some of the arguments against NE are:

The development thus far assumes each player has perfect an
comolete information about the the entire matrix.

Players are rational and only care about their own payoffs.

There can be multiple NE and hence no reason to believe we will end
up in a favourable NE even if the game is repeated and we find an NE.

Individuals have difficulty thinking about mixed strategies.

It is now known (and this is a result in AGT not previously considered
in GT), based on reasonable complexity assumptions, that it can be
computationally difficult to find an NE. As stated by Kamal Jain “If
your laptop can’t find an equilibrium neither can the market”.

Beyond these criticisms, there is an entire field called behavioural
economics including prospect theory giving alternative explanations
as to how individuals will make decisions.
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in GT), based on reasonable complexity assumptions, that it can be
computationally difficult to find an NE. As stated by Kamal Jain “If
your laptop can’t find an equilibrium neither can the market”.

Beyond these criticisms, there is an entire field called behavioural
economics including prospect theory giving alternative explanations
as to how individuals will make decisions.
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In defense of Nash equilibrium

All these criticsms can be offset to some extent.

The concept of perfect information games and Nash equilibrium can
be extended to one of probabilistic information. More specifically in
Bayesian settings, each player draws their playoff values from some
distribution (and these distributions can be independent or
correlated).
Agents are now sometimes algorithms which (perhaps arguably) are
rational agents that can implement mixed strategies.
The complexity arguments are worst case arguments and do not
necessarily tell us what to expect “in practice”.
Even if individuals may not think in terms of probabilities and/or have
trouble learning good mixed strategies, there is some evidence that
populations (e.g. as in the cheetah-antelope game and the soccer
penalty shot game) as a whole will evolve to learn mixed strategies.
Some other factors (beyond pure self-interest as we assume in
rationality) such as risk aversion (or attraction), or interest in the
social welfare or welfare of others can often be accomodated by
modifying the payoffs.
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The emphasis of this course

Our emphasis on rational decision making

This course is a more typical game theory/mechanism design course with
its emphasis on rational decision making (but with some attention to the
computational and informational asepcts of AGT) and concepts such as
Nash equilibrium for which John Nash received the 1994 Nobel Prize in
Economics. It should be noted that Daniel Kahneman received the 2002
Nobel Prize in Economics for his work with Amos Tversky (who died in
1996) for their work on alternative explanations of human decision making.

Do you make decisions rationally?
To what extent does intuition, experience, or emotion
determine your important decisions vs more time
consumptive and demanding rational analysis?
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